Kansasfest, July 2017
Rockhurst University — Kansas City, Kansas USA

An Apple Il Build Chain for Inform

Michael Sternberg

Abstract

Inform is a language and compiler which creates object code that can be executed by Infocom’s Z-machine.
Z-machine interpreters exist for many, many computer platforms, one of which is the Apple Il. This paper
describes the tools and methods for targeting Inform object code for a Z-machine interpreter running on an

8-bit Apple Il computer.

Contents

Introduction 1
1 Z-machine Interpreter Program Versions 2
1.1 ZIP Major Versions 2
1.2 ZIP Minor Versions (Apple Il) 2
2 Disk Organization of an Apple Il Title 2
2.1 Disk Organization (ZIP) 2
2.2 Disk Organization (XZIP) 2
2.3 Z-Code Sector Interleaving 3

3 ZIP: Obtaining an Apple Il Z-machine Interpreter 3
3.1 Extracting a ZIP from an Infocom Disk Image 3
3.2 Extracting an XZIP from an Infocom Disk Image 4

4 Z-Code: Using Inform to Create Story Files 4
41 Inform6.1.5 4
4.2 Build Inform 6.1.5 from source 4
4.3 TestInform6.1.5 5
5 Z-Code: Using Inform Libraries 5
514 minform 6
5.2 Inform Library 6/3 6
6 Writing to an Apple Il Disk Image 7
6.1 Writing a ZIP (v3) DiskImage 7
6.2 Writing an XZIP (v5) Disk Image 7
7 Survey of Infocom Titles & ZIPs on Asimov 8

Acknowledgments

e Graham Nelson for creating Inform, as well as his
work on reverse-engineering and documenting Info-
com’s Z-machine.

e Dave Bernazzani for creating minform, a version of
the Inform libraries for computers with restricted
memory resources.

o Steve Nickolas (a.k.a. Usotsuki) for creating the disk-
sector interleaving tools for Apple Ils: interl and in-
terlz5.

Introduction

Historical Background

The computer fantasy simulation, Zork, was created by mem-
bers of the Dynamic Modeling Group (DM) within MIT’s
Laboratory for Computer Science. The program was imple-
mented using a LISP-like programming language invented
within the group called MDL and ran on a Digital PDP-10
DECSystem-10 with 256 kilowords of memory (approxi-
mately 1152 kilobytes). Development on Zork began in
the spring of 1977 and continued until winter 1979 having
been expanded to the limits of the system’s available address
space.

When Infocom was founded by members of DM, it was
decided its first product would be a microcomputer version
of Zork. The target platforms were the TRS-80 (Model
I) and Apple II, each with a minimum requirement of 32
kilobytes of memory. Converting Zork from the original
mainframe environment to the resource-constrained micro-
computers presented a daunting technical challenge.

Elsewhere, UCSD Pascal’s P-machine proved it was
possible to densely pack program instructions as bytecodes
(P-code) and, at the same time, provide a means for cross-
platform compatibility. Although inspirational, Pascal was
ill-suited to Infocom’s goals. Being a general purpose pro-
gramming language meant it consumed resources for func-
tionality not needed by Zork. Additionally, programming
in Pascal would require a total re-write of Zork’s existing
MDL codebase.

Infocom instead devised its own virtual machine, dubbed
the Z-machine. The Z-machine was optimized for run-
ning text adventure programs on computers with limited
resources.

A cross-compiler system was created to read source
code syntactically similar to the original mainframe version
of Zork and generate Z-machine bytecodes (or Z-code) as
output.

And finally, a Z-machine Interpreter Program (or ZIP),
would run on a host platform, such as the Apple II. The ZIP
is an emulator of the imaginary Z-machine and having the
job of evaluating and executing Z-code instructions.

Roadmap for this Paper

The goal of this paper is to demonstrate how to obtain and/or
build the pieces needed to create a diskette-based Infocom-
like text adventure for the Apple II.

To get there, the following ingredients are needed:

e An Infocom ZIP (Z-machine Interpreter Program) for
the 8-bit Apple II.

e A version of the interactive fiction development tool,
Inform, that can generate story files, or Z-code, com-
patible with the Apple I1 ZIPs

e A set of Inform library files needed for the text parser
and object definitions.

e A tool called interl, that performs disk-sector inter-
leaving of the Z-code (story file) and writes its output
to an Apple II diskette image.

Each of these items will be discussed in turn.

1. Z-machine Interpreter Program
Versions

The first versions of the Z-machine Interpreter Program were
created for the Digital PDP-11, Tandy/Radio Shack TRS-
80, and the Apple II to implement Zork 1, II, and III. But
over time, many different host platforms and many different
games besides Zork would come to be supported by the
Z-machine architecture and its interpreters.

1.1 ZIP Major Versions

Throughout the 1980s, some of the resource constraints
found with the earliest microcomputers eased. The norm for
installed memory grew from, say, 16 kilobytes, to 64 kilo-
bytes, and later 128 kilobytes. Terminal displays grew from
40 character width to 80 characters. Meanwhile, Infocom
developers were beginning to imagine new game features
unsupported by the original Z-machine architecture.

Hence, the Z-machine — and transitively — the ZIPs
were updated to support larger story files, improved user-
interfaces, and new in-game features.

Table 1 contains a list of the major Z-machine and
interpreter versions created by Infocom. The bulk of Info-
com titles employed the ZIP (v3) architecture. EZIP/LZIP
(v4) increased the possible story file size. XZIP (v5) added
features like real-time gameplay. And YZIP (v6) added
graphics.

An Apple Il Build Chain for Inform — 2/9

Table 1. Major Versions of Infocom ZIPs

Version Name Max Story File
1-3 ZIP 128K
4 EZIP/LZIP 256K
5 XZIP 256K
6 YZIP 576K

1.2 ZIP Minor Versions (Apple II)

Between the major architectural changes to the imaginary
Z-machine, there were also many minor updates and fixes
to the interpreters. Infocom denoted these different versions
using letters (A, B, ...).

Table 2. (Most) Minor Versions of Apple II Infocom ZIPs

Major Minor Example Title Serial
2 - Zork 1 UG3AU5
3 - Deadline 820311
3 A Sorcerer 840131
3 B Sea Stalker 840320
3 E Wishbringer 850501
3 H Spellbreaker 850916
3 K Leather Goddesses 860711
3 M Moonmist 861022
4 A A Mind Forever Voyaging 850814
4 B Trinity 860509
4 C Bureaucracy 870212
4 H Nord and Bert 870722
5 A Border Zone 871008
5 E Hitchhiker’s Guide (SG) 871119
5 F Sherlock Holmes 871214

2. Disk Organization of an Apple Il Title

The disk contents of an Infocom text adventure for the Apple
Il is divided into three segments:

1. Boot code and a Z-machine Interpreter Program (ZIP)
2. Z-code (Story File)

3. Remaining unused space

2.1 Disk Organization (ZIP)

An Infocom game for the Apple II using a ZIP (v3) is stored
on a single 16-sector disk. The first three tracks (12,288
bytes) contain the boot code and the Z-machine Interpreter
Program. The fourth track and on contain the Z-code seg-
ment (story file). Since the story file can never be more than
128 kilobytes, a ZIP (v3) game will always fit on a standard
140k Apple II floppy disk (12k + 128k = 130k).

| 35 TRACKS X 16 SECTORS N

0 3 X 34
1IP I-CODE (STORY) | UNUSED

12K

) 140K)

Figure 1. Disk Contents of an Apple II ZIP (v3) Title

2.2 Disk Organization (XZIP)

An Infocom game for the Apple II having an XZIP (v5)
is stored on one or two disks. The first disk is formatted
with 16-sectors, where the first 4 tracks contain the boot
code and the Experimental Z-machine Interpreter Program
(XZIP). The fifth track and on contain the Z-code segment
(story file). If the story file is larger than 100,864 bytes, the
remainder of the Z-code is stored on a second 18-sector disk
image.

If a story file is less than 100,864 bytes, XZIP version
5A supports it as a single-disk game. XZIP versions 5E
and 5F do not support single-disk games. That is, (from my
experience) the story must be larger than 100,864 bytes if
using XZIP 5E or 5F.

| 35 TRACKS X 16 SECTORS s

0 4 34
SIDE: 1| 71P 1-CODE (STORY)...

16K |, 98.5K R

J 140K ,

| 35 TRACKS X 18 SECTORS s

0 X 34
SIDE: 2| ...I-CODE (CONT'D) UNUSED

157K .

Figure 2. Disk Organization of an Apple Il XZIP (v5) Title

2.3 Z-Code Sector Interleaving

For most Apple II ZIPs, the Z-code (story file) is written
to the diskette’s sectors that have been arranged in a non-
sequential, interleaved order. This is a common performance
optimization for spinning media. If done properly, the com-
puter will complete the processing of the most recently read
sector just before the next expected sector is approaching

An Apple Il Build Chain for Inform — 3/9

the read/write head. This works out to 6 or 7 sectors being
skipped. See Figures 3 and 4 .

To produce an Infocom ZIP-compatible disk will require
writing Z-code in the sector-interleaved order expected by
the ZIP. This job will be handled by the tools interl(z3) and
interlz5.

There is at least one Infocom title for the Apple II that
did not employ interleaving. Infocom’s ZIP (v3) E inter-
preter (found on Wishbringer Release 68 / Serial 850501)
does not use interleaving. This will be used in an upcoming
example to quickly concatenate a ZIP (v3), Z-code (story
file), and remaining unused space to assemble a bootable
Apple II diskette image.

Figure 3. Non-Interleaved Z-Code

ﬁ/

I

Ay

-—

i
g

Y

Figure 4. Interleaved Z-Code

3. ZIP: Obtaining an Apple Il Z-machine
Interpreter

3.1 Extracting a ZIP from an Infocom Disk Image
1. Download one or more ZIP (v3) Infocom games for
the Apple II. In this example, Wishbringer and The
Lurking Horror are downloaded from the Asimov
archive.

1 $ wget http://mirrors.apple2.org+
.za/ftp.apple.asimov.net /<
images/games/adventure/<+
infocom/{lurking_horror, <
wishbringer}.dsk

2. Determine the minor version of the Infocom ZIP
found on the disk. Launch the games in an Apple
II emulator and run the SVERIFY command at the
parser prompt. See Figures 5 and 6 .

Yo

WANT TO DO HOMWTY

! WHAT 00O
b 2 IEY
VERIFYING OIS

APPLE II
CORRECT .

Figure 5. Results of running $VERIFY in the example
Wishbringer. Notice Version E.

VERSIOH E

Figure 6. Results of running $VERIFY in the example The
Lurking Horror. Notice Version M.

3. Extract the ZIP from the first three tracks (12K) from
the . dsk file using the Unix head command. Choose
a name that denotes the major and minor versions.

1 $ head --bytes 12288 wishbringer<
.dsk > info3e.bin

> $ head —--bytes 12288 lurking_<¢
horror.dsk > info3m.bin

3.2 Extracting an XZIP from an Infocom Disk Im-
age
1. Download one or more XZIP (v5) Infocom games
for the Apple II. In this example, Beyond Zork and
Sherlock: Riddle of the Crown Jewels are downloaded
from the Asimov archive.

An Apple Il Build Chain for Inform — 4/9

1 $ wget http://mirrors.apple2.org<
.za/ftp.apple.asimov.net /4
images/games/adventure/<+
infocom/beyond_zork/<>
beyondzork{l.dsk,2.nib}

1 $ wget http://mirrors.apple2.org+
.za/ftp.apple.asimov.net /<
images/games/adventure/<
SherlockRiddleOfTheCrownJewels<
-{S1,S2-Reconstructed} .dsk

2. Determine the minor version of the Infocom XZIP
found on the disk. Launch the games in an Apple Ile
emulator (remember these games require 128K RAM)
and run the VERSTON command at the parser prompt.
See Figures 7 and 8 .

Hilltop

Figure 7. Results of running VERSION in the example
Beyond Zork. Notice Version A.

k of Infocom, Inc.

Figure 8. Results of running VERSION in the example
Sherlock: The Riddle of the Crown. Notice Version F.

3. Extract the ZIP from the first four tracks (16K) from
the side one disk image using the Unix head com-
mand. Choose a name that denotes the major and
minor versions.

1 $ head --bytes 16384 beyondzork¢
1.dsk > info5a.bin

> $ head —--bytes 16384
SherlockRiddleOfTheCrownJewels<
-S1.dsk > info5f.bin

4. Z-Code: Using Inform to Create Story
Files

Inform is a programming language and compiler that can
generate Infocom Z-code.

4.1 Inform 6.1.5

Inform 6.1.5 was the last version of the compiler with sup-
port for the creation of ZIP (v3) story files. Because our
target platform is an Apple II ZIP (v3) or (v5), Inform 6.1.5
will be the compiler version used for the examples to follow.

4.2 Build Inform 6.1.5 from source
1. Download the Inform 6.1.5 source code.

1 $ wget http://www.ifarchive.org/<+
if-archive/infocom/compilers/<+
informé6/source/old/inform6l5_<¢—
source.zip

2. Unarchive inform615_source. zip.

1 $ mkdir inform615
> $ unzip -d inform6l5 inform6l5_+¢—

source.zip

3. Rename source files to something the GNU C com-
piler expects. See Table 3 for a complete list of the
intended results.

cd informé615

rename ’'s/$/.c/’ x

mv Relnote.c Relnote.txt
mv header.c header.h

w
v W r

4. Edit line 69 of header . h. The preprocessor direc-
tive must be set to LINUX in order for code specific
to a GNU environment to be compiled. This is true
whether using Linux, MacOS, or Windows with Cyg-
win/MinGW).

Before

0 #define ARCHIMEDES

After

¢ #define LINUX

5. Compile. If successful, a new executable called inform
will be found in the current working directory.

1 $ cc —o inform *.c
2 $ 1s -1 inform

6. Copy the newly-created inform executable to a con-
venient location, such as /usr/local/bin

i1 $ sudo cp inform /usr/local/bin

An Apple Il Build Chain for Inform — 5/9

4.3 Test Inform 6.1.5

Here, create and compile a small bit of Inform code and test
it using a modern-day Z-machine interpreter such as Frotz
or Zoom.

1. Create a text file called hello.inf containing a
somewhat minimal Inform program.

1 [Main i;

2 for (1=0 : 1<5 : 1++)

3 {

4 print i, ": Hello!"™";

6 1i

2. Compile hello. inf for Z-code for a ZIP (v3). This
should create a file called hello.z3.

1 $ inform -v3 hello.inf
2 $ 1s -1 hello.z3

or, to create Z-code for an XZIP (v5).

1 $ inform -v5 hello.inf
2 $ 1s -1 hello.z5

3. (Optional) Run hello. z3 using a modern-day ZIP
such as Frotz.

1 $ frotz hello.z3

0: Hello!
1: Hello!
2: Hello!
3
4
[

[= T Y

Hello!
: Hello!
Hit any key to exit.]

<0

4. Create a bootable Apple II diskette by concatenating
a ZIP (v3) E, the Z-code, and finally padding the
remaining unused space with zeroes. In the end, the
. dsk file should be 143,360 bytes. Note: ZIP (v3) E
does not expect Z-code to be stored on the diskette in
a sector-interleaved order.

1 $ cat info3e.bin hello.z3 > ¢«

hello.dsk
2 $ 1s -1 hello.dsk
3 ... 13824 Jul 10 21:29 hello.dsk
4 $ echo $((143360 - 13824))
s 129536

¢ $ head —-bytes 129536 /dev/zero <
>> hello.dsk

7 1ls -1 hello.dsk

$§ ... 143360 Jul 10 21:29 hello.¢+
dsk

Table 3. Inform 6.1.5 File Renaming

Before After
arrays — arrays.c
asm — asm.c
bpatch — bpatch.c
chars — chars.c
directs — directs.c
errors — errors.c
expressc — expressc.c
expressp — expressp.c
files — files.c
inform — inform.c
lexer — lexer.c
linker — linker.c
memory — memory.c
objects — objects.c
States — states.c
header — header.h
symbols — symbols.c
syntax — syntax.c
tables — tables.c
text — text.c
veneer — veneer.c
verbs — verbs.c
Relnote — Relnote.txt

5. Boot the hello.dsk disk image using an Apple II
emulator.
|5 Enhanced Apple fie Emurator-1v x|

5. Z-Code: Using Inform Libraries

The simple Inform example in the previous section is suffi-
cient for proving the compiler behaves as intended and that
it’s possible to create a bootable Apple II diskette containing
a custom Inform program. But it’s not interactive fiction. To
build that requires a parser, a vocabulary, and a collection of
objects (rooms, things, etc).

Infocom’s Z-machine does not innately handle the job
of parsing text. The parser is itself written in Inform and
executed by the ZIP. A good, general-purpose parser is
available as a bundle of standard Inform libraries, usually
named Parser.h, Grammar.h, and VerbLib.h.

An Apple Il Build Chain for Inform — 6/9

Many iterations of the Inform Libraries exist and are ver-
sioned and distributed separately from the Inform compiler
using a major/minor notation like (6/1, 6/2, ..., 6/12). For
compatibility reasons, Inform Libraries contemporaneous
with the 6.1.5 compiler must be used. This seems to be in
the range of Inform Libraries 6/2 or 6/3.

Old libraries can be found at the following URL:

1 http://www.ifarchive.org/indexes/if—-<>
archiveXinfocomXcompilersXinformé6<—
XlibraryXold.html

But first we’ll examine a no-frills fork of the Inform
Libraries called mInform.

5.1 minform

miInForm is an unofficial, feature-reduced parser library for
Inform. It was created with the goal of targeting computers
with tight memory constraints.

If you are going to create a ZIP (v3) story, then you may
wish to compile it using the minform libraries to remain
under the 128 kilobyte restriction of the ZIP (v3) interpreter.
A bare Inform program compiled using minform generates
a 22 kilobyte story file. By comparison, the same source
compiled with the Inform 6/2 libraries is 44 kilobytes.

In this example, we’ll download minform and compile
the included example code called minform. inf.

1. Download mInform from the IF-archive.

1 $ wget http://www.ifarchive.org/4>
if-archive/infocom/compilers/+
informé6/library/contributions¢
/minform.zip

2. Unarchive minform. zip to its own subdirectory.

1 $ mkdir minform
> $ unzip -d minform minform.zip

3. Correct filenames for Unix.

1 $ cd minform

> $ mv grammar.h Grammar.h
3 $ mv parser.h Parser.h

4 $ mv verblib.h VerbLib.h

4. Compile the included minform example.

1 $ inform -v3 minform.inf
2 $ 1s -1 minform.z3

5. (Optional) Run minform. z3 using a modern-day
ZIP such as frotz.

1 $ frotz minform.z3

5.2 Inform Library 6/3

In this example, we’ll download and compile an Inform
conversion of the 1976 Crowther and Woods text adventure
called Advent. For this effort, Inform Library 6/3 is needed.

1. Download Inform 6/3 libraries from IF-archive.

1 $ wget http://www.ifarchive.org/+
if-archive/infocom/compilers/+
inform6/library/old/inform_<
library63.zip

2. Unarchive inform_library63.zip to its own
subdirectory.

1 $ mkdir inform_library63
> $ unzip -d inform_library63 <«
inform_ library63.zip

3. Correct filenames.

1 $ cd inform_library63
> $ rename ’'s/$/.h/" «
3 $ mv Verblib.h VerbLib.h

4. Download the source code for Advent.

1 $ wget http://www.ifarchive.org/+
if-archive/games/source/4>
inform/Advent.inf

5. Compile Advent .inf

1 $ inform -v5 Advent.inf

6. (Optional) Run Advent . z5 using a non-Infocom
ZIP such as frotz or xzip

1 $ xzip Advent.z5

6. Writing to an Apple Il Disk Image

6.1 Writing a ZIP (v3) Disk Image
Steve Nickolas’ original Interl tool from 2002, which can
be found at the IF-Archive as a compiled DOS/Windows
executable along with its QBASIC source, provides a way
to create an Apple II disk image using an Infocom ZIP (v3)
and Z-code (story file). It handles the task of writing the
Z-code segment in the sector interleaving order discussed
earlier.

A C language port of interl, called interl(z3), is now
available. In this section, we’ll download, build, and install
interl(z3) and use it to create a ZIP (v3) disk image.

1. Download interl(z3).

An Apple Il Build Chain for Inform — 7/9

1 git clone https://bitbucket.org/<+
michael_sternberg/interlz3

2. Build interl(z3).

1 $ cd interlz3
2 $ make
3 $ 1s -1 interlz3

3. Install interl(z3) to a convenient location.

1 $ sudo cp interlz3 /usr/local/«
bin

4. Use interlz3 to create minform.dsk using a ZIP
(v3) and Z-code (story file) created earlier.

1 $ interlz3 info3m.bin minform.z3+
minform.dsk

5. Boot the minform.dsk disk image using an Apple
emulator.

E Enhanced Apple //fe Emulator - TV ’?
iy Roon core: f

Welcone to the Toy Box mInform adventure!

iruell leads doun.

3 robot, 3 toy

6.2 Writing an XZIP (v5) Disk Image

In December 2016, Steve Nickolas created an sector inter-
leaving tool for XZIP (v5) story files, called interiz5. In-
terlz5 creates one or two disk images depending on the size
of the Z-code (story file). An XZIP interpreter and Z-code
are written to the first disk in a manner similar to interiz3. If
the story data is sufficiently large, a second, 18-sector disk
is written in nibblized (.nib) form .

1. Download interiz5.

1 $ wget http://3.buric.co/interlzé
5-001.zip

2. Unarchive interlz5.

1 $ mkdir interlz5
> $ unzip -d interlz5 interlz¢+
5-001.zip interlz5.c

7.

. Build interlz5.

1 $ cd interlz5
2 $ cc -o interlz5 interlz5.c
3 $ 1s -1 interlz5b

. Install interlz5.

1 $ sudo cp interlz5 /usr/local/<«>
bin

. Use interlz5 to create two disks for Advent using an

XZIP (v5) and Z-code (story file) created earlier.

1 $ interlz5 info5a.bin advent.z5 <«
advent_sl.dsk advent_s2.nib

. Boot the advent_s1.dsk disk image using an Ap-

ple II emulator.

(0] Enhanced Apple /e Emulator - v x|

Bt End OF Road core: 36 Moves:

: and information.)

round you

Survey of Infocom Titles & ZIPs on
Asimov

A list of Infocom titles and their corresponding release and
interpreter details Table 4 .
Some observations:

No early versions of Zork I as published by Personal
Software appear to exist in the archive.

Many version M diskettes appear to be non-Infocom
hacks where a ZIP and Z-code were cobbled together.
Presumably this was a fan’s preference to use a more
mature version of the interpreter with older titles. The
suspicious titles are highlighted in yellow.

Wishbringer Release 68 appears as version E in the
Asimov archive. However a version F with the same
release number was found at archive.org. This
is the only example of a version E interpreter. Version
E does not employ sector interleaving.

Inform published several classic titles as Solid Gold
editions. These used XZIP (v5) interpreters. Hitch-
hiker’s Guide appears to be the only one found in the
Asimov archive.

An Apple Il Build Chain for Inform — 8/9

An Apple Il Build Chain for Inform — 9/9

Table 4. Infocom titles for the Apple II on Asimov sorted by Serial

Title Serial Release Major Minor
Zork 1 UG3AU5 15 2 -
Zork 11 UG3AU5S 7 2 -
Deadline 820311 18 3 -
Deadline 820809 22 3 -
Zork 1 820803 26 3 -
Starcross 821021 17 3 -
Suspended 830222 5 3 -
Zork 11T 830331 15 3
Planetfall 830708 20 3 -
Enchanter 830810 10 3 -
The Witness 830910 18 3 -
Infidel 830916 22 3 -
Infidel 830916 22 3 A
Deadline 831005 27 3 M
Sorcerer 840131 4 3 A
Seastalker 840320 86 3 B
Seastalker 840501 15 3 B
Suspended 840521 8 3 M
Zork I 840726 88 3 M
Zork 111 840727 17 3 B
Cutthroats 840809 23 3 B
The Witness 840904 22 3 M
Zork 11 840904 48 3 M
Hitchhiker’s Guide 840914 47 3 B
Suspect 841005 14 3 B
Hitchhiker’s Guide 841221 56 3 B
Wishbringer 850501 68 3 E
Wishbringer 850501 68 3 F
A Mind Forever Voyaging 850814 77 4 A
Spellbreaker 850916 63 3 H
Wishbringer 850920 69 3 M
Planetfall 851003 37 3 M
Ballyhoo 851218 97 3 H
Trinity 860509 11 4 B
Leather Goddesses 860711 50 3 K
Leather Goddesses 860730 59 3 M
Enchanter 860820 29 3 M
Sorcerer 860904 18 3 M
Spellbreaker 860904 87 3 M
Moonmist 861022 9 3 K
Hollywood Hijinx 861118 235 3 K
Hollywood Hijinx 861215 37 3 K
Bureaucracy 870212 86 4 C
Stationfall 870430 107 3 M
The Lurking Horror 870506 203 3 M
Bureaucracy 870602 116 4 H
Nord and Bert 870722 19 4 H
Plundered Hearts 870730 26 3 M
Beyond Zork 870917 49 5 A
The Lurking Horror 870918 221 3 M
Border Zone 871008 9 5 A
Hitchhiker’s Guide (Solid Gold) 871119 31 5 E
Sherlock 871214 21 5 F
Possibly hacked ZIP (v3) M & Z-code combination

EZIP/LZIP (v4)

XZIP (v5)

	Introduction
	Z-machine Interpreter Program Versions
	ZIP Major Versions
	ZIP Minor Versions (Apple II)

	Disk Organization of an Apple II Title
	Disk Organization (ZIP)
	Disk Organization (XZIP)
	Z-Code Sector Interleaving

	ZIP: Obtaining an Apple II Z-machine Interpreter
	Extracting a ZIP from an Infocom Disk Image
	Extracting an XZIP from an Infocom Disk Image

	Z-Code: Using Inform to Create Story Files
	Inform 6.1.5
	Build Inform 6.1.5 from source
	Test Inform 6.1.5

	Z-Code: Using Inform Libraries
	mInform
	Inform Library 6/3

	Writing to an Apple II Disk Image
	Writing a ZIP (v3) Disk Image
	Writing an XZIP (v5) Disk Image

	Survey of Infocom Titles & ZIPs on Asimov

