
][-Vision
Streaming video on an Apple][

Kris Kennaway
KansasFest 2019

Demo
● //gs pretending to be //e
● i.e. 1 MHz, 64k, extended 80-column card
● Standard Apple][speaker, not //gs sound
● Audio out with amplified speaker for presentation
● Uthernet II - streaming from my laptop
● For convenience, loading player from CFFA3000

○ but not relying on these

● Should work on everything going back to original 64KB Apple][
○ but untested (yet!)

Demo
Double Hi-Res

Credits: https://www.youtube.com/watch?v=rXONcuozpvw

5-bit audio from a 1-bit speaker
● Apple][speaker knows how to tick (move in/out), once
● Old technique going back to ~1990
● Pulse Width Modulation: precisely control the duty cycle of 1-bit speaker cone

by allowing it to move during a fraction of each time interval
○ e.g. 14 cycles out of every 73.

● By varying this duty cycle you can modulate a constant "carrier wave"
(1MHz/73 = 14.3KHz in this case) with lower frequencies, and simulate higher
audio bit depth.

○ e.g. with 32=25 possible duty cycles at 73 cycles this gives 5-bit audio at 14.3KHz.

● This frequency is lower than ideal (Michael Mahon's dac522 player uses a
non-audible 22KHz carrier) but not too bad on the built-in speaker

○ at least to my 41-year old ears ;)

Audio playback - in code
TICK = $C030 ; tick speaker

; tick speaker 12 cycles apart
and pad to 73 cycles (14.3KHz)
op_tick_12:
 STA TICK ; 4 cycles
 ; wait 12 cycles
 NOP ; 2 cycles
 NOP ; 2
 NOP ; 2
 NOP ; 2
 STA TICK ; 4 cycles

 ; wait 54 cycles
 NOP
 NOP
 NOP
 ; [...24 more NOPs...]
@D:
 JMP somewhere ; 3 cycles

Audio playback - in code

● ...look at all those wasted CPU cycles o_O
● In a RAM-based audio player this is where you’d have to

deal with stepping through memory, figuring out where to
jump next, etc.

● Probably willing to trade extra CPU cycles for more
efficient use of memory.

● dac522 gets about 4 seconds of playback from 48KB

Uthernet II ethernet card

● I bought an Uthernet II
○ now what can I do with it?

● W5100 ethernet controller
● Auto-incrementing memory pointer into 8KB of onboard

TCP read socket buffer
○ every time you read the same Apple II I/O location it steps through the

8KB of internal memory on the W5100

● Fastest possible way to get data into 6502, short of DMA

From audio to video

● The audio decoding is the most timing-critical part
○ hang off this chassis

● Let’s fill in those wasted cycles by reading bytes from the
TCP socket
○ Ignore TCP stream management for now

Step 1: Self-modify to work out what to do next
; tick speaker 12 cycles apart and pad

to 73 cycles

op_tick_12:

 STA TICK ; 4 cycles

 ; tick again 12 cycles later

 NOP ; 2 cycles

 NOP ; 2

 NOP ; 2

 NOP ; 2

 STA TICK ; 4

 ; wait 54 cycles

 NOP

 NOP

 NOP

 ; [...18 more NOPs]

 ; ask TCP stream where to go next

 LDA TCP_DATA; 4 cycles

 STA @D+2 ; 4 cycles

 LDA TCP_DATA ; 4 cycles

 STA @D+1 ; 4 cycles

@D:

 JMP somewhere ; address self-modified

Step 2: Video is about storing bytes to memory
; tick speaker 12 cycles apart and pad

to 73 cycles

op_tick_12:

 STA TICK ; 4 cycles

 ; tick again 12 cycles later

 ; ask TCP stream which byte value

 ; to store

 LDA TCP_DATA ; screen content value

in A register

 NOP ; 2

 NOP ; 2

 STA TICK ; 4

 ; wait 54 cycles

 NOP

 NOP

 NOP

 ; [...18 more NOPs]

 ; ask TCP stream where to go next

 LDA TCP_DATA ; 4 cycles

 STA @D+2 ; 4 cycles

 LDA TCP_DATA ; 4 cycles

 STA @D+1 ; 4 cycles

@D:

 JMP somewhere ; 3

Step 3: Images have redundancy, and errors are OK
op_tick_12_page_20:

 STA TICK ; 4 cycles

 LDA TCP_DATA ; load content byte

 ; store same content byte at 4

 ; offsets within memory page $20

 ; load first page offset into Y

 LDY TCP_DATA

 STA TICK ; 4

 STA $2000,Y ; store content byte

 LDY TCP_DATA ; load second offset

 STA $2000,Y ; store content byte

 LDY TCP_DATA ; load third offset

 STA $2000,Y ; store content byte

 LDY TCP_DATA ; load fourth offset

 STA $2000,Y ; store content byte

 ; 6 cycles left over

 NOP

 NOP

 NOP

 ; ask TCP stream where to go next

 LDA TCP_DATA ; 4 cycles

 STA @D+2 ; 4 cycles

 LDA TCP_DATA ; 4 cycles

 STA @D+1 ; 4 cycles

@D:

 JMP somewhere ; 3

Summary: Audio + video player opcodes
● We have enough spare cycles to store a single arbitrary byte value at 4

arbitrary offsets on page $20, while ticking the speaker 73 cycles apart
● What about other HiRes screen 1 pages ($21..$3F)? Just copy this 31 times
● Supporting other speaker duty cycles 4, 6, …, 66 - same basic idea (although

fiddly to rearrange things to tick at exactly the right cycle counts)
○ and for 2 of them I could only get them off-by-one cycle

● Somewhat magically, these 32*32=1024 player opcode variants (barely) fit in
64K main memory together with ProDOS

○ few KB to spare in odd corners
○ 6 leftover cycles are necessary to allow rearrangements, and to reduce memory by JMP’ing to

common code sequences.

Is it enough?

● Can store 4 screen bytes every 73 cycles
● ~57000 byte stores/second
● 40*192=7680 bytes on hires screen
● so about 7.5 complete screen refreshes/second
● should be (barely) enough for reasonable frame rates,

assuming we can manage the errors.

Enough details, let’s watch another video
(HiRes, 24 FPS)

Credits: https://www.youtube.com/watch?v=9lNZ_Rnr7Jc

https://www.youtube.com/watch?v=9lNZ_Rnr7Jc

Video player - recap

● TCP byte stream is steering CPU to spray a sequence of
bytes at 4 offsets on a memory page within HiRes screen
page 1

● ...while also steering speaker cone to produce 5-bit audio.
● No conditional 6502 opcodes so far, playback is

completely deterministic
○ also only uses 2 of 3 6502 registers, convenient to maintain X=0

● But we can only read 8KB of data before we fall off of the
end of the TCP socket buffer

Slow path
● Need to periodically manage TCP socket buffer
● Want to leave some free space so socket buffer can refill in the background

while we read from it
● 2KB is good compromise
● Server can cause client to perform TCP buffer management when exactly

2KB has been read from socket buffer
○ move socket read pointer, ACK TCP stream, check that at least 2KB still in socket buffer

● Need to keep ticking speaker every 34+39 cycles during slow path to
minimize audio artifacts

○ 34 cycles is the “baseline” speaker duty cycle

● Slow path fits in 2x73 cycles i.e. 2 "neutral" audio frames every 292
○ 0.7% noise/overhead

While we're in here
● What about Double HiRes?

While we're in here
● What about Double HiRes?
● Requires flipping a single soft-switch to steer writes between HiRes screen

pages in MAIN memory or AUX memory

While we're in here
● What about Double HiRes?
● Requires flipping a single soft-switch to steer writes between HiRes screen

pages in MAIN memory or AUX memory
● Since that has a bit of overhead, we'd probably want to only flip back and

forth periodically

While we're in here
● What about Double HiRes?
● Requires flipping a single soft-switch to steer writes between HiRes screen

pages in MAIN memory or AUX memory
● Since that has a bit of overhead, we'd probably want to only flip back and

forth periodically
● ...so let's do it in the slow path

While we're in here
● What about Double HiRes?
● Requires flipping a single soft-switch to steer writes between HiRes screen

pages in MAIN memory or AUX memory
● Since that has a bit of overhead, we'd probably want to only flip back and

forth periodically
● ...so let's do it in the slow path
● read a TCP byte and self-modify to interpret this as a soft-switch address to

toggle.

Double Hi-Res support in 3 instructions
op_ack: ; slow-path - manage TCP buffers

 ; [...]

 ; allow flip-flopping the PAGE1/PAGE2 soft switches to

 ; steer subsequent writes to MAIN/AUX screen memory

 LDA TCP_DATA ; ask TCP stream which soft switch to flip

 STA @D+1

@D:

 STA $C0FF ; flip the soft switch (low-byte is modified)

● By adding 3 instructions to the player loop (plus some initialization, and timing
fixups) we can support DHGR video playback.

● Gives some visual interlacing but reasonable quality at 2KB frame size

Now what?

● So now we have a player that is capable of playing a
(D)HGR video stream with multiplexed audio.

Now what?

● So now we have a player that is capable of playing a
(D)HGR video stream with multiplexed audio.

● How do we produce one?

Now what?

● So now we have a player that is capable of playing a
(D)HGR video stream with multiplexed audio.

● How do we produce one?
● How do Apple II colour graphics work, anyway?

Now what?

● So now we have a player that is capable of playing a
(D)HGR video stream with multiplexed audio.

● How do we produce one?
● How do Apple II colour graphics work, anyway?
● Let’s see what Woz had to say...

Woz explains Apple II colour graphics
(HiRes, 30 FPS)

Credits: https://www.youtube.com/watch?v=uCRijF7lxzI

https://www.youtube.com/watch?v=uCRijF7lxzI

Woz explains Apple II colour graphics
(HiRes, 30 FPS)

Credits: https://www.youtube.com/watch?v=uCRijF7lxzI

(4 days without sleep, folks)

https://www.youtube.com/watch?v=uCRijF7lxzI

Crash course in Apple II colour graphics

● signals from colour TVs go up and down, up and down
○ at a certain speed

● 4 little 0-1 bits, circling around
● going up and down at a different time, then red would

become blue
● 16 patterns of 1’s and 0’s, become different shades

Crash course in Apple II colour graphics

● signals from colour TVs go up and down, up and down
○ at a certain speed

● 4 little 0-1 bits, circling around
● going up and down at a different time, then red would

become blue
● 16 patterns of 1’s and 0’s, become different shades
● (Come to my lightning talk tomorrow)

Video transcoder

● Demultiplex input sequence of video frames and audio
stream

● Downsample audio to 14.7KHz (=44.1KHz / 3) and
normalize to 5-bit range
○ 2.8% slower playback at 14.3Khz but better downsampling quality

● Bill Buckels’ BMP2DHR to turn video frame into "ground
truth" Apple II memory representation

● Compute colour artifact representation of memory frame

Video transcoder

● Choose sequence of (content, page, offsets) to minimize
error between old and new image frame
○ this is the main computational step

● Multiplex audio and video into sequence of player
opcodes

● Compile opcodes into byte stream tailored for particular
version of player, i.e. known memory addresses

● Insert slow path opcodes every 2KB

Frame error minimization

● Choose (content, page, 4 offsets) such that they
minimize the perceptual difference between current
screen content and target content

● Priority order - resolve the largest differences first
● Residual errors accumulate to next frame
● Prioritizes large differences between frames
● If we don’t get to resolving fine detail this frame, we’ll be

more likely to next frame (if diff is still there)

Perceptual distance
● Some colours are perceptually more similar than others

○ e.g. lower visual error introduced by substituting a nearby colour or leaving with “wrong” colour

● CIE2000 perceptual colour difference metric
● Compute strings of coloured pixels that are influenced by storing a given byte
● Damerau-Levenshtein edit distance between two such pixel strings

○ measures how many pixel colour changes and transpositions are needed to turn one string
into the other

○ i.e. also accounts for shifting groups of pixels left/right (less perceptual difference)

● Precompute edit distance between all possible source and target pairs
○ i.e. taking into account the visual pixel colour changes introduced by storing all possible bytes

against all possible backgrounds.

● Python (NumPy), ~5x-10x slower than real-time

Future work: video quality
● BMP2DHR + encoding errors gives an approximation of an approximation of

the true image
○ Also BMP2DHR is completely unaware of artifact colours?

● Should get better results by directly optimizing against original image frame
● Can optimize directly for the unusual constraints of video player (4 offset

stores of the same content byte)
● Take artifact colours into account
● Better control of spatial error diffusion

Caveat: likely more computationally expensive

Future work: audio, player
Audio quality

● with better signal processing should be possible to reduce audio artifacts

Player

● Player currently hard-codes IP address (should be ~easy to fix) and Uthernet
II slot (harder to fix - need to patch thousands of memory addresses)

● Would be nice to have a file selector UI
○ i.e. bidirectional TCP communication with server to enumerate and select available files

● Playback seek controls would require real-time encoding
○ i.e. rewriting in higher-performance language

https://github.com/KrisKennaway/ii-vision

kris.kennaway@gmail.com

https://github.com/KrisKennaway/ii-vision

