Inside A2Stream

glitch-free
high-quality '
internet audio
streaming j—
on the Apple Il

Oliver Schmidt
KanasFest 2022

Demo

Requirements:

* Enhanced //e incl.
ext. 80 column card

or
* llgs

and

* a2RetroSystems
Uthernet Il card

i

oy | KL

T
! ‘. v - L
w : =4 ¥l RiQ T_ A N\
N ¥ a

LT T A T_AOCuUsEL

(=4
2

L]
¥

|

) ey
I
-y)
X W
o) (ae)
o RS
M)y
L /8
N - ew)
U "D
i
\

" § .

et

Background

e A2Stream is built around pulse-width modulation (PWM)
* Why not pulse-density modulation (PDM)?

* Complete, working implementation based on PDM
* Quality not satisfying

* Michael J. Mahon explained why he considers PWM superior

So here we are...

Pulse-Width Modulation

Pulse-Width Modulation

Numbers {

1

23

4567812345678

’

N

resolution

number of bits necessary to

express the amount of
distinct duty cycles
l.e.

\ 8bit res. <> 256 duty cycles

clock rate

determines the times when switching on/off is possible

|

678123456781234567

pulse rate

frequency of switching on

<

/

duty cycle
percentage of time being on

|

AB/IC123456/789ABC1

Tradeoff

For a given clock
speed, there’s a
tradeoff between

resolution and
pulse rate.

456781234567 81234567
4 . N\
lower resolution
higher noise level
A ’
N e N
lower pulse rate
/ : . . :
\h|gher risk of noticeable carrier |
89/ ABC123456789ABC12S3

Values for A2Stream

e Target pulse rate: 22050 Hz

e Same as DAC522 ... no more experiments ;-)

e A2Stream uses individual machine cycles as clock rate
* Although all 6502 instructions require at least two machine cycles

* So, what is the possible resolution for the target pulse rate?
* With 1 MHz, there are 46 machine cycles per pulse
* But that does not mean 46 distinct duty cycles...

A2Stream Duty Cycles

Shortest duty cycle:

Longest duty cycle:

A2Stream Duty Cycles

Shortest duty cycle: Longest duty cycle:
4 ,) a
The first few duty The last few duty
qgle + 1. speaker t

cycles are cycles are
impossible %/ a — ¢r’m\@% impossible

—7 oggle | A2Streamimplements {ome c;k/c (oS

STA $C030 36 distinct duty cycles in 35

the 46 machine cycles

» spend some cycles _ _aker toggle

35 STA $C0O30 4
4)
JMP somewhere 3 JIMP[BTW: DAC522 implements
He 32 distinct duty cycles in the
same 46 machine cycles

Pulse Generators

* For the 36 distinct duty cycles, there are 36 distinct pieces of code
* Every execution of one of those pieces generates exactly one pulse

 Running the same pulse generator several times, keeps the speaker
 Like the PWM-controlled light bulb keeping the brightness

* Running different pulse generators in a sequence, moves the speaker
* Like the PWM-controlled light bulb fading in/out

* The task of A2Stream is to run the 36 pulse generators in a sequence
that reflects the changes in the audio signal

JMP Target Modification

* The 6502 is 8-bit, but its address space is 16-bit

* The 6502 address space can be seen as 256 pages of 256 bytes each

e Each address consists of 2 bytes
* The high-byte denotes the page, the low-byte denotes the offset on that page

* The JMP instruction consists of 3 bytes:

JMP OpCode,Target Offset,Target Page

e A2Stream modifies every JMP target before executing it
* Self-modifying code

Pulse Generator Placement

e A2Stream can’t spend the cycles to modify both bytes of a JIMP target
e Option 1: All pulse generators are on the same page = doesn’t fit ¥

e Option 2: All pulse generators are on the same offset v*

= The 36 pulse generators are on the 36 pages S40 — S63
* Pages $20 — S3F are used by the high resolution graphics screen

= ,All“ a pulse generator has to do with the cycles just spent so far:
1. Get somehow a byte with a value $40 — $63
2. Set the JMP target high byte to that value

Uthernet Il Network Interface

* The a2RetroSystems Uthernet Il card is build around the WIZnet
W5100 Ethernet controller

* The W5100 contains a TCP/IP stack, but most Apple Il programs rather
use their own TCP/IP stack

e Usually, a web client wants to receive the data (much) faster than a
web server can send it

* In contrast, A2Stream needs to receive the data (much) slower than a
web server wants to send it ® the web server needs to be throttled

* A2Stream fully relies on the W5100 TCP/IP stack to autonomously
take care of TCP flow control, which provides that very throttling

Uthernet Il Host Interface

* Receiving TCP data with the W5100 means to:
1. Check, if there’s data available in the W5100
2. Compute the W5100 RAM address of the data
3. Read the individual data bytes from the W5100
4. Commit the number of bytes read to the W5100

e Steps 1.), 2.) and 4.) all require way more cycles than the ones left in a
single pulse generator = there’s no data during those steps :-(

Solving this problem is THE innovation of A2Stream!

Pulse Generator Types

* The individual steps are distributed over different pulse generators

* There’s a 2-dimensional array of pulse generators:
1. dimension: The 36 distinct duty cycles
2. dimension: The different pulse generator types

* Fortunately, pulse generators are short enough to share pages
= The (unmodified) JMP target low byte can control the sequence of

the pulse generator types — and this way the sequence of the
necessary steps to take

Pulse Generator Program Flow

duty cycle 35
page S63

duty cycle O - P
page $40 __ 1111111

1]1(1(1 1
212 (2|2

pulse gen. type 2 |2 |2 3133

pulse gen. type 3

pulse gen. typen |n

Pulse Generator Program Flow

duty cycle 35
page S63

duty cycle 0 | AN T = NERE
page$40 = = 1] AN ENENENENEN RN}

ERER NS,

(WA

2 |2

w DN

3|3

2
pulse gen. type 2 |2 |2 20313313 3

pulse gen. type 3

pulse gen. type n |Nn

Pulse Generator Program Flow

duty cycle 35
page S63

duty cycle O | ——
page $40 ___ = 1111111

212222
31313

1|1

pulse gen. type 2 |2 |2
pulse gen. type 3

pulse gen. typen |n

Ring Buffer

* The W5100 can’t provide a contiguous byte stream

= A2Strem needs a ring buffer

* Every pulse generator reads exactly one byte from the buffer = JMP
* Some pulse generator types can’t write a byte into the buffer = W5100

= At |east one pulse generator type must write more than one byte into
the buffer

Stack Pointer

read value

e -{write value
/
/
|
Liead pointer
\
N\

* 6502 has only 3 general registers (A, X, Y)

* Abuse the stack pointer (SP) as 4. register

e 65C02-specific instructions required

write

SP: read pointer [\SP: write pointer

STA $0100,Y
INY

PHX“iii

PUSH X
to stack

|

read

UL
from stack

|

Custom Assembler

* Even with abusing SP, a single pulse generator still can’t write 2 bytes
into the ring buffer :-(

* However, 2 pulse generators together — of course of different types —
manage to write 3 bytes

* A2Stream creates the code for all those pulse generators at runtime

* Allow to select Uthernet Il slot
 Allow to select speaker (SC030) vs. tape out (SC020)

* A2Stream contains a custom assembler written in C using cc65
* Only one source for all duty cycles (instruction scheduling is automatic)
* Only the source that differs between pulse generator types (other is implicit)

Source Code

* Source of two pulse generator types used for the visualization
* Those two types are executed by turns
* The code can presume both A and Y to be retained!

LDA (Sxx),Y]

& STA Sxxxx,Y]
LDA_IY _PTR), STA_AY(HIRES_189-1),

STA_AY(HIRES_186-1), STA_AY(HIRES_190-1),
STA_AY(HIRES_187-1), STA_AY(HIRES_191-1),
STA_AY(HIRES_188-1), INY,

ﬁ stop assembling]

Generated Code cycles 1

sum is always 46
green
toggle speaker
orange
type-specific
grey
spend cycles

blue
flow control

65C02-specific instruction
DUty CyCIES OO d nd 01 like STA (Sxx),Y but without Y

Duty Cycles 02 and 03

Duty Cycles 04 and 05

Duty Cycles 06 and 07

Duty Cycles 08 and 09

Duty Cycles 10 and 11

Duty Cycles 12 and 13

Duty Cycles 14 and 15

Duty Cycles 16 and 17

Duty Cycles 18 and 19

Duty Cycles 20 and 21

Duty Cycles 22 and 23

Duty Cycles 24 and 25

Duty Cycles 26 and 27

Duty Cycles 28 and 29

Duty Cycles 30 and 31

Duty Cycles 32 and 33

— — . . T m B N E——

o~ —n Fo N S B S A N
. T m B N E——

. T m B N E——

Duty Cycles 34 and 35 < STA SPEARE v

NOP
NOP

N

STA SPEAKER
NOP
NOP 2

N

Page Sets

* Up to 5 pulse generator types can share a page
* But A2Stream has 10 pulse generators types

= A second set of pages is necessary, it is on the 36 pages $S64 — $87
= Every pulse generator type is either in page set O or in page set 1

= The data needs to contain either S40 — S63 or S64 — S87,
depending on the page set, the next pulse generator type is in

= The data needs to exactly match the internal A2Stream structure

Is this bug? No, it’s a feature...

Loops

Initialize data block, part A
Initialize data block, part B

Initialize data block, part C

Commit data block, part A

Commit data block, part B

usually a loop variable check
but A2Stream has no cycles

ransfer 3 bytes into the buffer, part A

Transfer 3 bytes into the buffer, part B

Loops

Initialize data block, part A

usually a loop variable check}

Initialize data block, part B but A2Stream has no cycles

ransfer 3 bytes into the buffer, part A

/(Transfer 3 bytes into the buffer, part B

)

Commit data block, part A

Commit data block, part B those two pulse generator }

types have the same offset!

page set 0, S40 — $63

%ri/salmost empty]

ize data,

{

ize data,

!
ize data, part C

Initia part A«

Initia part B

Initia

page set 1, S64 — S87
[buffer is full
N

— transfer data, part A

transfer data, part B

data “breaks” code out of the two
“endless” loops by setting the
\ JMP target into another page set

> commit data, part A
commit data, part B
prepare visualization

— Visualize, part A

visualize, part B

Visualization

* Completely precomputed
* 140 visualization templates

* Each template can be either of 2 types
1. Odd bytes of a double hires line to be placed in MAIN memory
2. Even bytes of a double hires line to be placed in AUX memory

* Every 256th data byte is a visualization value inserted into the stream
* One pulse generator type reads two bytes from the ring buffer

* The visualization byte selects one of the 140 templates

* The selected template is copied to the bottom 6 hires lines

Memory Layout

e Similar to the duty cycles, every template is on a different page

* 140 templates on the pages S10 — S1D and $40 — SBD
* Pages $40 — S87 are shared with the pulse generators

 The A2Stream player runs completely in AUX memory
* No MAIN<AUX copy
* Double hires data and templates are loaded from W5100 into AUX

* Pulse generators are generated by C program in MAIN into AUX
* Highly optimized C code places relevant variables in zero page, no ALTZP

* Trampoline in language card above ProDOS QUIT code

trampoline

AUX

N\

$40

$20

heap
$00 G

|

visualization
templates

Q&A

