Apple |l audio
from the ground up

Kris Kennaway
KansasFest 2022



About me

Apple Il user since the 1980s
(~2019) became interested in Apple Il audio/video

e (KFest 2019) Streaming video + audio over ethernet (][-Vision)
e (2020) Nox Archaist splash screen (simultaneous audio + animation)
o (KFest 2021) Streaming video + audio from CFFA3000

Never felt | really understood how audio worked

(in fact there was a lot | had misunderstood!)



Start at the beginning



APPLE 1L

REFERENCE MANUAL




THE SPEAKER

Inside the Apple’s case, on the left side under the keyboard, is a small 8 ohm .speaker. It is con-
nected to the internal electronics of the Apple so that a program can cause 1t to make various
sounds.

The speaker is controlled by a soft switch. The switch can put the paper cone of the speaker in
two positions: ‘‘in’” and ‘‘out’’. This soft switch is not like the soft switches controlling the vari-
ous video modes, but is instead a roggle switch. Each time a program references the memory
address associated with the speaker switch, the speaker will change state: change from ‘‘in’’ to
““out’” or vice-versa. Each time the state is changed, the speaker produces a tiny ‘‘click’’. By
referencing the address of the speaker switch frequently and continuously, a program can gen-
erate a steady tone from the speaker.

The soft switch for the speaker is associated with memory location number 4920@. Any reference
to this address (or the equivalent addresses -16336 or hexadecimal $Cﬂ30| will cause the speaker

to emit a click.




That's all there is.



Well OK, let’s dig deeper



Lies!

This isn’t true! Only some 65(c)02 opcodes do this
The POKE command in BASIC does have this behaviour...

...though only on a 6502 based machine, not 65c02 (e.g. enhanced //e and
above)



What happens when we access $C0307?



Voltage changes when toggling speaker
Hantek Y/ & Tyl WWWWIWWW 4.00us Utility X

1=38.30us

System
| nformation

Firmware
Update

Save
Waveform

Self
Calibration

B inr. D00mV




Voltage changes over longer timescale

Hantek ™ /]# i VWWWWWW |w]  20.0ms
1-12.50ms!

mmww.wwnwawwml m%WMW

Utility X

| System
I nformation

Firmware"
Update

Save
Waveform

Self
Calibration

mn o KA
500my




Don’t leave me alone

e If we toggle the speaker low and
leave it alone for >30ms, it relaxes
back to the high state (after 100ms)

e Next access tries to pull voltage
high

e ...butit's already there, so no
speaker movement




Simplifications

from now on treat applied speaker
voltage as a square wave
...ignore the initial overshoot

(@)

may introduce some error, revisit

...ignore the long-time decay

©)

because we won’t leave the
speaker alone long enough for
this to matter

Hantek M/ [ #]

L

WWWWWW |[w|  4.00us

Utility

System

I nformation

Firmware
Update

ave
Waveform

Self
Calibration

Page 1/3

X




A speaker click

6.9900 6.9910 6.9920 6.9930 6.9940 6.9950 6.9960 6.9970 6.9980 6.9990 7.0000 7.0010 7.0020
-Play enabled
Initial response
High frequency oscillations
[\ {\ {\ ﬂ [\/\/\—\A - A /\/\J\/\ AR NN N ./x/"\/'\v-—\__' AN
T e ey

UU |
Slow response
Lower frequency oscillations




A speaker click

6.9910 6.9920

-Play enabled

|

3880Hz dominates

I

MM i
O VAVAA v

480Hz dominates




Speaker response

Applied voltage (~square wave) — speaker response (oscillatory)
Speaker rings like a bell when we kick it

If we can model this impulse response mathematically, we can understand how
speaker will behave in response to arbitrary stimulus



Simulating the speaker

e interested in speaker response at short time scales
o ignore 480Hz component
e a damped harmonic oscillator
o  spring subject to damping force
o RLC circuit
e can simulate in discrete time, e.g. clock cycle by cycle

o See e.g. Signal Processing in C (C. Reid, 1992)
o complicated maths, simple result
o should be possible to implement in emulators



Simulating the speaker

e in order to know the position y_of the speaker at clock cycle n we just need
the applied voltage V_, and the speaker position at cycles n-1, n-2

Yao=C i Y1~ G Y0 + Vn-1

e where c,, c, are constants that depend on the parameters of the speaker
o resonant frequency, envelope decay

e we can obtain these by fitting against the recorded click waveform
o or frequency spectrum



Our simulated 3880Hz click

0. 0.0510 0.0520 0.0530 0.0540 0.0550 0.0560 0.0570 0.0580 0.0590 0.0600 0.0610 0

0.8
0.7 1

0.6

0.5+
0.44
0.3
0.24

0.1



Speaker acts like a filter

Square wave speaker
input

Modulated speaker
output

g e 8 B & P RS
3.2.%8.8.8.8 8




How about arbitrary waveforms?

we don’t just want simple square wave tones

e but how can we do this if we can only control whether the applied speaker
voltage is high or low?

e Most existing Apple |l audio waveform generation uses Pulse-Width

Modulation

Dr. Cat, late 80s, unreleased

SoftDAC (Scott Alfter, 1990)

DAC522, RTSynth, ... (Michael Mahon)

][-Vision (ethernet/CFFA3k video streaming), Nox Archaist splash screen (Kris Kennaway)
A2Stream (Oliver Schmidt)

O 0O O O O O



Pulse Width Modulation

e we can't generate a constant voltage other than high or low

e Dbut we can generate an average voltage over some interval

e ...by holding the speaker high for some fraction a of the interval and then low
for the remainder b

e i.e. we are using the varying width of this speaker pulse to modulate the
audio

e speaker will oscillate up and down, but on average its position is given by
al/(a+b)

e This fraction is called the duty cycle



Pulse width modulation - duty cycle

50% duty cycle

50%

on

50%

off

75% duty cycle

/2%

on

off-

25% duty cycle

25%

on

75%
2 /0

off

Credits: Wikipedia


https://en.wikipedia.org/wiki/Pulse-width_modulation#/media/File:Duty_Cycle_Examples.png

Pulse width modulation - ideal vs actual response




Pulse Width Modulation - limitations

e effectively turns 1-bit speaker control (2 positions) @ 1Mhz into ~5 bits of
control (~40 positions) @ 22Khz
e Can produce quite good audio quality. But...
o spectrum is dominated by 22KHz “carrier wave” - chosen to be inaudible
o oscillation of speaker around average position — audio distortion
o we can only produce a small number of average speaker positions —
limited audio detail

e Louder waveforms are usually not too bad
o higher signal:noise

e Limitations are especially noticeable for quiet audio
o waveforms close to 0 are dominated by noise



Pulse Width Modulation in action

Let’s hear this in action
We can use our speaker model to simulate the sound of PWM audio
Picked a quiet track that shows the limitations

Keep in mind this is showing the worst case behaviour for PWM
o also this audio file is much louder than the sound produced by Apple Il speaker

Original audio »
(Simulated) PWM

Music: Adventure by Alexander Nakarada

Licensed under Creative Commons BY Attribution 4.0 License



http://www.serpentsoundstudios.com
https://creativecommons.org/licenses/by/4.0/

Can we do better?



Applying our speaker model

e \We know from our model how the speaker will respond when we kick it (invert
applied voltage)

e If we have fine enough timing control, we can time the kicks to direct the
speaker where we want it to go

e i.e.to cause it to trace out an arbitrary waveform precisely
o  (within limits of our model)



Delta modulation

e This is called delta modulation

e \We monitor the audio signal produced by the filter (simulated speaker), and
when it drifts too far from the desired value we kick it in the other direction

e Speaker constantly jiggled back and forth to stay centered on the desired
waveform position



Delta modulation

Analog signals

Delta-PWM signal

o

Reference
Limits
Output
AN y /)
/4
Time

Credits: Wikipedia


https://en.wikipedia.org/wiki/Delta_modulation#/media/File:Delta_PWM.svg

Delta modulation vs standard PWM

e Delta modulation is a form of PWM
o we’re still modulating the pulse width of a square wave signal
e Differences from standard PWM:
o doesn’t modulate at a fixed frequency
o needs high modulation frequency to control white noise (“quantization
error’) due to tracking back and forth either side of target waveform
o not “fire and forget” - needs understanding of speaker output to
determine when to modulate PWM signal



Delta modulation on the Apple Il

e \What is possible to implement on the Apple [1?

o Previous work: “BTC player” (Oliver Schmidt, 2018)
o in-memory playback, encoder uses a simpler speaker model

e Know from past work (][-Vision) that streaming audio using Uthernet Il has
higher performance than playback from memory
e Let'slook at the core audio loop - what’s the tightest we can get?


https://github.com/KrisKennaway/ii-vision

Uthernet || memory model

WDATA COx7

0x0000 Common Registers

0x0030 Reserved

0x0400
Socket Registers

0x0800

Reserved

0x4000

Receives data
streamed over
ethernet

TX memory

0x6000 \

Apple |l address space (64KB)

RX memory
TCP receive buffer

_/
W5100 onboard memory (32KB)



0x0000 Common Registers

0x0030 Reserved

Uthernet Il memory model | s

0x0800

Reserved

0x4000

auto-increments
on R/W access
to WDATA

Receives data
streamed over
ethernet

TX memory

WDATA COx7

0x6000 \

RX memory
TCP receive buffer

/
Apple Il address space (64KB) W5100 onboard memory (32KB)



First approach

audio_operation:
STA $C030 ; toggle speaker [4 cycles]
; maybe some NOPs to generate different cycle timings
LDA WDATA ; read low byte of next address to jump to [4 cycles]
STA @0+1 ; self-modify to jump to it [4 cycles]
@9:
JMP $20xx ; jump to next operation [3 cycles]

;5 4+4 + 4 + 3 =15 cycles, toggles speaker at 68KHz



Not bad, but can we do better?

e Deeper look at Uthernet |l memory map
e Onboard hardware (W5100) exposed to Apple |l via 4 soft switches

CO0x4 (x = slot# + 8)
COx5
COx6

COx7

W5100 mode register
W5100 address high
W5100 address low

Data port (WDATA)

Normally #$03

Pointer into onboard W5100
memory address space

read/write results in R/W to
address specified by
$(COx5).

Normally auto-increments
CO0x5/6 (in mode #3$03)



A trick!

The Uthernet Il hardware doesn’t decode all of the address lines

soft switches at $C0x4...$CO0x7 are also mapped at $C0x8...$C0xB

Read as a 16-bit address, the high byte of $C0x7 (WDATA) is given by $C0x8
(WMODE)

...which is set to #$03

JMP (WDATA) will jump to an address in page 3

...with page offset chosen by the next byte in the W5100’s onboard memory

we can chain player operations directly from the TCP socket buffer!
o no need for self modifying code



Improved approach

audio_operation:

STA $C030; toggle speaker

JMP (WDATA) ; jump to $03xx with low byte taken from socket buffer
; 4 + 6 =10 cycles on 65c02 (9 on 6502)
; toggles at 102Khz (113KHz on 6502)

e audio playback is actually 10% faster on 6502 than 65c02!
o 65c02 fixed a 6502 bug when JMP (indirect) crosses a page boundary, at
the cost of an extra cycle (6 vs 5)
o possibly the most anyone’s ever used JMP (indirect)



A 16-byte audio player

; even cycle intervals
tick 00:

NOP ; 2 cycles
tick o1:

NOP ; 2 cycles
tick 02:

STA $C030 ; 4 cycles
tick ©5:

JMP (WDATA) ; 6 cycles

; odd cycle intervals

tick 08:
NOP ; 2 cycles

tick 09:
NOP ; 2 cycles

tick @a:
; When X=#$31, accesses
; $CO30 on cycle 5
STA $BFFF,X ; 5 cycles
JMP (WDATA) ; 6 cycles



Chaining operations

By chaining together these operations we can toggle the speaker at any cycle
interval >= 10. For example:

tick _©2: STA $C030 ; toggle on cycle 4
tick_©5: IJMP (WDATA) ; WDATA = #$05 — tick 05 [6 cycles]

tick _©5: IJMP (WDATA) ; WDATA

#$01 — tick 01 [6 cycles]
tick ©1: NOP ; 2 cycles
STA $C030 ; toggles on cycle 4

; 6 + 6 + 2+ 4 =18 cycles between toggles



Core playback loop

e Easily fits in page 3 (16 bytes)
e Play audio by placing page 3 offsets in TCP stream to chain together 7 audio
operations
e Can toggle speaker with 1MHz precision
o pick exactly which CPU cycle to toggle on
e ...at anything up to 100Khz frequency
o toggle no more often than every 10 cycles
e Not the whole story

o we still have to work out what happens when we finish stepping through the socket buffer
memory

e Butlet's look at how we can use this audio player for delta modulation



Encoding the audio

e Given audio input file (e.g. .wav, .mp3)
e Upscale it from input sample rate (usually 44100Hz) to ~1MHz CPU clock rate
o actually 1020484Hz on NTSC, 1015657Hz on PAL
e Each 1MHz audio sample gives the desired speaker position at successive
clock cycles
e At each step, we have a choice of 7 possible player operations we could do

e Simulate them all and pick the best one
o i.e. the one that tracks the target waveform most closely

e Record it and play the simulated audio forward to the end of that operation



Encoding audio

e Can do better: look several steps into the future (e.g. 30 cycles) and simulate

all possible combinations
o allows adapting better to upcoming waveform changes

e Typically toggles the speaker at around 100Khz
e Here's what it sounds like (simulated) #



Delta modulated waveforms (simulated)




OK so we're done, right?

e Not so fast, we only have 8KB of data to work with in the ethernet socket
buffer

e ~ 8ms of playback @ 100Khz

e \We need to periodically drop out of continuous audio playback to tell the
W5100 to manage the socket buffer

e \We know what the speaker does when left to its own devices: it clicks

e So we have to keep modulating the speaker while doing this

e Insert a special operation every 2KB in the audio stream that causes us to
jump to a management path



TCP buffer management

buffer management takes 70 cycles, ignoring the speaker
we can'’t control speaker closely during this period - too many combinations
do the best we can

repeating duty cycle (a, b) but with variable modulation frequency
o >=22KHz, so not audible

e one variant for all possible speaker duty cycles (a,b), at+b <= 46
o subject to some additional constraints

e a lot of tedious code to write by hand
e wrote a program to generate it



TCP buffer management

end up with 209 variants for end-of-frame processing

o fairly complicated 3-stage jump process, 19KB of (generated) assembly
o effectively gives ~7.7 bits of speaker control, though only a fraction are commonly used

let audio optimizer pick the best one each time

0.7% of playback time is spent in end-of-frame (~140 cycles out of ~20480)
some quality degradation but minimal

manifests as a ~50Hz background crackle from slightly losing control of the
speaker tracking during end of frame processing



Putting it all together

e Review:
o we worked out how to simulate the Apple Il speaker on a cycle by cycle
cadence

o we built an ethernet audio player that can control the speaker with cycle
level precision at up to 100Khz
m i.e. toggling the speaker every >= 10 cycles
o we built an audio encoder that works out how to drive the player to make
the (simulated) speaker precisely trace out an arbitrary audio waveform
e Let's hearitin action

e This is an audio recording of the built-in speaker on an Apple //le
o unprocessed except to normalize volume



What's next?

e https://qgithub.com/KrisKennaway/ii-sound/

e not 100% happy with end of frame processing
o ~b50Hz crackle due to tracking errors during end of frame
o should be possible to tune further

e improve speaker modeling

o applied voltage is also a damped harmonic oscillator
o speaker response has two coupled oscillators (~3880Hz, ~480Hz)

e scale down to in-memory playback
o quality and playback duration will be lower
o but maybe still competitive with PWM?

e implement speaker modeling in emulators?



https://github.com/KrisKennaway/ii-sound/

Questions?



Bonus material



Delta modulation with an RC circuit



Delta modulation with an RC circuit

e Prior work in the Apple Il community (Oliver Schmidt, 2018) implementing
“Binary Time Constant” audio player

e really just delta modulation but with a simpler model for speaker response

e models speaker as an RC circuit (first order DE) instead of RLC (second
order DE)

e response to applied voltage is exponential, not oscillatory

e | started the work this talk is based on back in 2020 using this method, but
couldn’t get quality high enough

e (gives good results for continuous sample playback, but plagued by clicks
during end of frame processing



https://github.com/oliverschmidt/Play-BTc
https://github.com/KrisKennaway/ii-sound

What's going on?

it “works” because as long as we’re toggling the speaker often enough (~10
cycles), RLC speaker response (oscillation) is approximately the same as RC
speaker response (exponential)

approximation breaks down over longer time scales, e.g. during EOF
processing (~140 cycles)

because we're using the “wrong” model for predicting the speaker response,
we get audio clicks when playing on the physical speaker



W5100 buffer management



W5100 buffer management

e Minimal end-of-frame buffer management requires about 70 cycles
o tell the card to ACK the 2KB we’ve just read from the socket
o behind the scenes the W5100 will fill up another 2KB ready for us to read later
o double check there is at least another 2KB ready to go

e How can we control the speaker during this work?
o can'tjust pick a fixed cadence, e.g. every 10 cycles cycles
o we know from PWM this will cause speaker to drop to the midpoint (0-position)
o might be far from desired waveform - introduces audio errors
o worse, we also know what happens if we have a sudden sustained voltage change: the
speaker clicks



PWM with a twist

e Best we can do is generate lots of variations of the same basic buffer
management but with different (a, b) duty cycles

PWM with a variable duty period, still using delta modulation to select

Limit a+b <= 46 to keep carrier frequency >= 22KHz

Let the audio encoder pick the best one

e.g. (4, 21) — 25 cycle period, 40.8KHz

209 variations, effectively gives ~7.7 bits of speaker control

~140 cycles out of ~20480 spent in buffer management = 0.7% of playback
time

e minimal quality degradation



other big constraint: we have to start the process by jumping to a location in
page 3

but we can'’t directly enumerate all 208 buffer management entry points in
page 3 (6 bytes each)

ended up being a fairly complex 3-stage jump process to vector from page 3
to the actual buffer management variants

would be a nightmare to code this by hand; wrote code to generate it

13K lines of assembly (19KB) vs 16 bytes for core audio loop!



