PAUL HAGSTROM, KANSASFEST 2022

MAKING AN
APPLE /// ARCADE GAME

APP]

128K-256K RAM

"2MHz" clock speed

Serial port, Silentype printer
port

RGB output, 6 bit audio
Clock nearly built in

Custom text character sets

= /// IMPROVEMENTS

Chainable disk drives, one
built in.

Better keyboard, numeric
keypad

80 columns, lowercase, new
graphics modes

Emulation mode for Apple
lIs circa 1980. 48K Apple |l
Plus.

PRETTY GREAT FOR WRITING GAMES?

Sophisticated interrupts

(VBL and more!) Multiple zero pages,

. L, and stacks
Smooth scrolling

(hardware scrolling) Customizable text fonts

6-bit DAC audio 140x192 16-color hires
560x192 b/w super hires
24x48 color text

"1.4MHz" speed

128K-256K memory

BUT Y

HERE

’0 [N J Apple J/] [apple3] - MAME 0.244 (LP64)

Atomic Delense

by Andy Hertzfeld

(gdshb”"dsh 2

kv M. ASTRAHAN

The JOBs
Grouchga Levels 1.2, 3

Harpy ﬁ Levels 2,3

- Chu:kgﬁ Leuel 3

eevee

_|—‘

& The MWOZ

_X

B CR

ARE FEW

SCORE: @AEEEE RATOME DEFENSEY ROUJND=@1

-l ==
LS i
ot | ety
=

SCORE
@

[J PALSE
L) THEME
(&l MOUSE
BONUS

@

PLAYERS

£

CUSTOMIZABL

- CHARACT

The Apple /// has its character set in RAM.

Can animate REALLY FAST.

RS

=TS

Change 56 pixels (7 across, 8 down) with a single write.

Change an entire horizontal band 280x8 with 40 writes.

The on/off colors (16 for on, 16 for o

can be set with a single write.

1) for all 56 pixels

With this mechanism, you could write passable games
even in Business BASIC. They're just text games.

TEXT-BASED GAMES

000 Apple /[[apple3] - MAME 0.244 (LP64) 000 Apple /// [apple3] - MAME 0.244 (LP64)
. LU L I .

nn AT
LA TGl e L

000 Apple /[[apple3] - MAME 0.244 (LP64)

33 s s i3 0t st T tLT, APPLE_CHOMP HI-SCORE

L FEEEE XFRFEER X FEEERR
b3 # A A

g MEN LEFT:J3

3

#
FEER FEER

3
3
3
3

#
A

FEER
A A

A

*

I FC I I I
FEFCIC I I
FEFC I I I I
I I I I

A
FEEEE FEXREXK

FEEER

I I I I
FEF I I I I
s
H
>
s
I I I
FEFCIE I I
FEF I I I I I

3
>
H
3
3
FEF I I I I
I I I I I I
H 3H
s 3
H 3H
H 3

FEEER
COPYRIGHT @ 1234 DAN A. KUMESH

7

HIHH I I I I I I I I I IH e

A
A
A
A
A
#
A
A
A
A
A
A
A
A
A
A
#
A
A
A
A
#
¥

Fress

a key to b n game
Xi***************%***** XXQX#*XXXth

D
Fad ek

RUNNING HORSES

* Andy Hertzfeld,
Apple Il System
Demonstration

THE PLAN

Write an arcade game in assembly language using the new
graphics modes and enhanced teatures of the Apple ///.

Of course, | hadn't written anything in assembly language
on the Apple ///.

Nor had | written any arcade games.

Nor did | really know how the new graphics modes or
enhanced features of the Apple /// work.

This was a nearly foolproof plan.

THE TALK

Basic game plan

Screen splitting, interrupts, blanking
Dealing with memory

Graphics modes

Smooth scrolling

Custom character sets

Interrupt-driven audio

WHAT KIND OF GAME?

Screen split into regions to use many

ditfterent graphics modes at once, using the
HBL signal.

Use the new graphics modes (560 bw, 140
full color, 280 constrained color) and color
text mode.

7y L
k_f*w

Cv 0o 4 LITILE KA

A _J 84 sthng £ s o

. . . . :f:"
Use smooth scrolling to shift pixels vertically, =

much faster than if they had to be drawn.

Use custom character set to "fake" fast
graphics.

Use audio DAC for effects.

"DISKHERO™

Disks scattered on map.

You try to get them (to
image them!) before
the hoarders do.

Hoarders seek high
value disks, can be
distracted by dropping
one.

A bit of a Dung Beetles
vibe, zoomed in

viewscreen on a smaller
map.

00 Apple /| [apple3] - MAME 0.244 (LP64)

hi o a1 A 99] l i
Lﬂel E'l H «u«re BEEaE g

f— L —— ——
i — ~ —NA e Bl pLal

Apple /| [apple3] - MAME 0.244 (LP64)

SCREEN REGIONS

Top super hires region shows
"splash" eftect when inventory
changes.

Text region shows score and
Inventory.

Hires regions show (portion) of
larger map that scrolls.

Text playtield uses custom
characters as sprites for rapid
animation.

Medres region... never figured
out what to do with that.

SCREEN SPLITTING

groril—— 3

Have you ever wanted 1o creat
and hi-res gra

« HEVE AN APE|
s SPLIT

-

ca

display w;
phics on the same screen’ R T doase Sraphics

?Or hic
four lines of text at the bottom? Pl i
: , N just
Con om? Or how aboyt lext with foyr lmei (;f
As we all know, the A le IT he
play all o-res s

of text at the
latter two formats are s

100
200
210
220
230
240
250
300
310
400
500

s only fiv f
graphics, all hj-res graphic play formas, It can dis.

aphics, all text, |
bott : e a0 CIR Wit
Om, or hi-res with four lines of text ¢ the bo[flou; lines
om
i The

{xmg of graphics an
erence Mamyg|. “There s o way to
HOME

FORK = 0 70 39
POKE 1448 + K 14 « 16
POKE 2000 + K. 10 + 1¢
COLOR= K + 4

VLIN 25 45 AT K

NEXT K

VTAB 6. HTAB 17
PRINT “APp| £ ‘!f‘

CALL 768

GOTO 40

BY

display both

ways of
possible
The t

Iing is famy)

and 800
tain Spec

BOB BISHOP

ol
8]

|

R

i

graphics modeg
dnplu_\mg both gr
10 display any o
echnique of n;um
1ar to program
nes, and ge
1al hardware th

aphics modes on the same screen, it 18
mbination of modes! it
g display modes by the process of screer ’ﬂ
mers who've used the Apple 11, the Aw‘ e
veral other computers. These machines &
at helps detect what is referred to as

mach

at the same time.” Well, not only are'lh“‘

blanking and horizontal blanking. What is not generally known is that the
blanking can be detected by the Apple I, even though it lacks the spe-
cial hardware found in those other machines.

Example Program. Before jumping into a technical discussion of the
hows and whys of screen splitting, let’s look at an example of screen split-
uing on the Apple I1. Listings | and 2 present a short Applesoft main pro-
gram and a machine language subroutine that the program calls

Take a few moments now to turn on your Apple and enter these two
programs. Don't worry if you don’t understand machine language. Just
£0 into the Monitor from Basic by typing call—151 followed by the re-
turn key. Then start typing in the hexadecimal values for the 'h%lmg 2
subroutine that starts at $0300

)0:8D 52 CO

v th
Oy tf

1e return key

oft program. What do you see?
18 correctly.) Y

Now run the Ap otl
PG un the ‘ (Nothing, if you
n’t ou should see a text message in the
S color graphics in the bottom half, This is

ana |

SOITALL®

ol ADDRESS
$2000
$2400
$2800
$2C00
$3000
$3400
$3800
$3C00
$2080

3y e e S

L"‘ Dhe S o R

UNDISPLAYED
DISPLAYED

Figure 1. Memory mapping of bytes on hi-res page.

i information
Apple maps its memory onto the display screcn.l('l} l}lf.;e l:;::nlcne i 3
cnpebullgs e tzrfuﬁfjvzmifﬁ; in particular is shown
The essence of what we need to v o ottt BetE
i " Each line of the display is forty bytes long fro |
lz;glgt;;el arE 192 such lines from top to botton:).r;l' !;:‘:Jg:gr)‘; ::l,atpg’::g
ewhat haphazard: consecutive mem
?:::Scs:::cuuve lineF; of the display. Einal,ly, for each set 012 128 bytm? ::'
display memory only 120 bytes (three lines’ worth) are dm;:i yr:diherefore
maining eight bytes of the 128-bytc set art:, ncxer secn’a,!n a S
sometimes referred to as the *‘undisplayed” or *‘unused bytd. :se
displayed bytes all lie, concq}tually,ljust off the bottom right-hand edge
/, as shown in figure 1.

i n%ix(:l;‘r)xl?lo-ms both map in a way similar to hi-res, exccpt‘that each
cluster of eight lines now comes from one set of forty bytes instead of
eight sets, and instead of the screen buffer being located at $2000 through
$3FFF it lies at $0400 through $07FF. (Compare the Apple I1 Reference
Manual pages 16 and 18 with page 21.) :

Some Preliminary Insights. Let’s try a few expcrimcnts:. that might
give us some clues as to how screen splitting can be accompllsheq. From
Basic type the command call —151 (followed by return) to get into the
Monitor. Next, clear the screen by issuing the escape—shift-P sequence.
Now type C05/ followed by return. (Hitting return will always be as-
sumed from now on.) The computer will probably display:

C051— A0
(If it doesn’t, try typing C05! again.)

Typing CO51 from the Monitor is the way to turn on text mode if the
computer is displaying graphics. But since we’re already in text mode,
nothing much happens—nothing much except that the contents of
$CO51 are displayed. But $C051 isn’t supposed to be a readable ad-
dress; it’s merely a screen switch. So what does it mean for $CO051 to con-
tain SAQ? Is it just a coincidence that SAO is the hex code for an ASCII
blank, and that most of the screen is also blank? What would happen if
we typed C054? Or CO56? Again, we tend to get A0 if the screen is most-
ly blank.

Let’s try another experiment. Again from the Monitor, type:

2000:73 2001< 2000.3FFEM

followed by:

C050 C053 Co057

BLANKING INTERVALS

Trick to screen splitting is to
make changes when the

beam is off. HBL or VBL.

Timing is predictable, but on
Apple Il you don't have a

VBL or HBL signal, so
requires some trickery.

The Apple /// has VBL
interrupts. And HBL

interrupts. Piece of cake.

6522 VIAS

Two VIA chips deal with
most of the interrupts,
memory banking, zero page
olacement.

These are pretty general-
purpose devices. They have
timers and counters and
input/output registers. The
Apple /// connects them to
specific things.

You talk to them via the
addresses FFDx and FFEx.

R6522

VERSATILE INTERFACE

DESCRIPTION

The R6522 Versatile Interface Adapter (VIA) is a very flexible /O
control device. In addition, this device contains a pair of very
powerful 16-bit interval timers, a serial-to-parallel/paraliel-ta
serial shift register and input data latching on the peripheral
ports. Expanded handshaking capability allows control of
bidirectional data transfers between VIA's in multiple processor
systems.

Control of peripheral devices is handled primarily through two
8-bit bidirectional ports. Each line can be programmed as either
an input or an output. Several peripheral 1/0 lines can be
controlled directly from the interval timers for generating
programmable frequency square waves or for counting exter-
nally generated pulses. To facilitate control of the many powerful
features of this chip, an interrupt flag register, an interrupt enable
register and a pair of function control registers are provided.

ORDERING INFORMATION

Part Number:
R6522

Temperature Range
Blank = 0°C to +70°C

R = -40°C to +85°C

Package
C = Ceramic
P = Plastic

Frequency
No Letter = 1 MHz
A = 2 MHz

Document No. 29000D47

ADAPTER (VIA)

FEATURES

¢ Two 8-bit bidirectional /0 ports

e Two 16-bit programmable timer/counters
® Serial data port

® TTL compatible

e CMOS compatible peripheral control lines

e Expanded “handshake” capability allows positive control of
data transfers between processor and peripheral devices.)

® Latched output and input registers
¢ 1 MHz and 2 MHz operation
¢ Single +5V power supply

O NN HWN =

R6522 Pin Configuration

Data Sheet Order No. D47
Rev. 8, October 1984

Apple /// Computer Information < Apple /// Level 2 Service Reference Manual

APPLE /// LEVEL 2
SERVICE REFERENCE
MANUAL

This is pretty much the only detailed
reference to how all of this stuff
works.

It is pretty informal in places. And
wasn't really available to regular
people in the 1980s.

There was kind of a lot of figuring
things out needed.

Theory of Operation e Servicing Information

Rob Justice's disassembly of Andy
Hertzfeld's Atomic Defense was

. . Written by Apple Computer o 198
very helpful in getting started! FILLEN BY Apple LOMPLRET ¢ 1992

pple Computer Inc *+ 1982 Page 0001 of 073

INTERRUPTS

FFCD is the IRQ vector. It we put JMP Somewhere in there, the
6502 will jump there whenever an interrupt is encountered.

The interrupt handler needs to save and restore the state
(AXY), tigure out which interrupt woke it up.

By reading FFED (the E-VIA interrupt enable register), you can
see what caused the interrupt, and by writing there you can
clear it.

Relevant interrupts here are HBL ($20), VBL ($10), Keyboard
($01), Timer ($02).

INTERRUPT TIMING

Saving and restoring registers burns cycles. TXA, TAX, TYA, TAY
are 2, PHA is 3, PLA is 4! RTI (return from interrupt) is 6.

HBLs occur every 65 cycles, and you have 25 cycles while the
blanking is actually happening. It is basically unworkable to
count HBLs and switch graphics modes whenever you reach the
scan line. By the time you're ready to switch, the HBL is over.

However: You can set the VIA up to count HBLs, and report in
only every, say, 8. That leaves time to restore the context after
switching modes, and for doing the actual game logic between
Interrupts.

"2MHZ"
The Apple /// runs its 6502 at 2MHz.

Sort of. Sometimes.

't runs at TMHz when the video memory is going out. Even
when the processor is set to 2MHz.

* 192 lines of video display (65 cycles each, 12480 cycles total)

e 70 lines of VBL (4550 cycles at TMHz, so about 2100 cycles
at 2MHz).

o 73% ot the time, running at 1MHz, 27% of the time running
at ZMHz.

"2MHZ" AND MAM

MAME does not presently emulate the downshift for video memory.

On areal ///, ideally shift mode between 65 and 80 cycles in (during the
HBL after the one that triggered the interrupt). MAME is going to run twice
as fast, getting through 130-160 cycles in that same time.

Easy to wind up with something that looks fine in MAME and gets the splits
all wrong on real hardware because HBLs were missed during processing.

To get something that runs on both MAME and real hardware, must switch
FAST because they get further apart quite quickly. (Also easy to fool yourself
into thinking your game runs fast enough during development!)

Very important to set the next 8-line HBL timer immediately in the handler.

NTERRUPT

ANDLER

This is what | have as of
now. Not sure it's as good
as it could be. Resets the
timer by 30 cycles.

Switches modes in 23
cycles by reterring to
modes by branch offset
and moditying itself.

There's a reason | did not
lean more on the stack or
zero page, which is...

diskhero

e JE buildmap.s I interrupts.s I diskhero.inc IE diskhera
;7 mMoae LI (a3 -meares) - L1Nes - By—br (1¢) I5—17 ‘Mea1um: res - Sometning

; 'Getting-the -HBL timer-reset is urgent-enough-that-I-will-do-that
; rproperly-stashing-the-environment. - -To-dodge-an-inaccuracy with
; 'present-does -not-downshift to 1MHz-during-video-drawing) -I-need
; reset-within-the first-32 cycles ideally: (MAME: running-at-double
| ; 'cycles -before-first -HBL -would be missed). - -Next -most:crucial: thi
; *video-modes fast-because-real hardware-is-already-progressing do

nothbljmp: - jmp nothbl ; 19-once-departing - from-here.: Ju
l inthandle: sta IntAStash ; 4-save-A
clc ; 2-assume-by-default-that-this is
lda RE_INTFLAG ; 4 identify- the-interrupt -we-got
and #$20 ; 2:-is-it-HBL-after-all?
beq nothbljmp 7 2/3-branch+jump-off-to-the-rest
sta RE_INTFLAG 7 4-clear-the -HBL-interrupt
lda #$07 7y 2-reset-the-timer2-flag:-for-8 HB
sta RE_T2CL H!
lda #0 ; 2+and...
sta RE_T2CH ; 4-go! [30-to-get to-this-point,
stx IntXStash H!
lda NextMode ; 4
sta -modebranch-+ 1 ; 4-modify next-instruction:to-go
modebranch: bne ismodel ; 3:-[45-to-here]
ismode®: bit D_TEXT :mode-@-—-+00-—-40-char-A3-text [1
bit D_NOMIX
bit D_LORES
jmp isddone
ismodel: bit D_TEXT ;jmode-1-—-+18 - —-medres- [15 - cycles]
bit D_NOMIX
bit D_HIRES
jmp isddone
ismode2: bit D_GRAPHICS ;jmode-2-—-+24---super-hires- [15 cy
bit D_MIX
bit D_HIRES
| jmp- isddone = Ln94,Col16 +0,-0 65¢(
ismode3: bit D TEXT imode-3-—-+30-—--A3-hires-(3:cvcles

diskhero - zsh

(base) hagstrom@ThatmOneMini diskhero % ca65 diskhero.s
(base) hagstrom@ThatmOneMini diskhero % 1d65 —o diskhero.bin -C apple3big.cf
(base) hagstrom@ThatmOneMini diskhero % ac -d test.po SO0S.INTERP

POINTABLE ZERO-PAGE AND STACK

Apple /// allows you to designate any page as"zero page" and "stack."

The 6502 can refer to any address in a 64K space using 16-bit
addresses, but two "pages” of 256 bytes are special.

On the Apple Il, the "zero page" occupies addresses $00 to $FF. The
6502 has instructions that can interact with these addresses faster,
because it only takes one byte to specity an address.

The "stack" occupies $100-1FF, and is a LIFO data store that the 6502
can stash information in fairly quickly (using pushing and pull
instructions).

On the Apple ///, you can specity which page is the zero page, it does
not need to be $00. So you can interact fast with any page you choose.
Like, say, the graphics bufter.

POINTABLE ZERO-PAGE AND STACK

To set the zero page, you store the value in $FFDO.

You then have a choice about the stack. It can either be

adjacent to the zero page
(ZP EOR #%01, above ZP when odd, below ZP when even)

at $100

f ZP is in video memory, true $100 is probably better—since
alt stack would ALSO be in the graphics butter. Constrains
JSR and RTS along with PHA and PLA.

Chosen via a bit in the Environment Register ($FFDF).

PUSHING TO THE SCREEN

You can fill the first text line

LDA #5C1 2 ($400-427) with "A"s faster.
TR T 2 Plus, the 6502 is clocked
. STA $0400,X 5 us, the 'S clocked at
DE X 2 closer to 2ZMHz.
BPL : - 2
LDA #%05 2
364 STA $FFDO A
LDA $FFDF 4
ORA #%$260 2
LDA #%04 2 STA $FFDF 4
STA $FFDO 4
LDA #$C1 2
LDA #$C1 P LDX #$27 2
LDX #$27 2 TXS 2
STA $00, X 4 PHA 3
DE X 2 DEX 2
BPL : - P BPL : - 2

6+324 = 330 16+286 = 300

PUSHING PIXELS

In various places | use either pushing to the screen via
the stack, or writing to the screen using the zero page.

But: this means that when an interrupt arrives, | don't

know where the stack or zero page are. They might be
onscreen. And it costs more cycles to save state, set
them to a known value, and restore them than it does

just to use absolute 16-bit addresses.

Apple /// Computer Information e Apple /// Level 2 Service Reference Manual ﬁ
fﬁ*1||y:|:|:l¢z«:::t!1::t:t::r||1<; B
128-256K e Memory May
$19¢0¢ RAM (8K 128K
. ANK @ ANK 1 ANK
6502 can see 64K at s : — —
$3002
once. 54900
$5900
séeee RAM (32K) RAM (32K) RAM (32
But we want more. | e
$800¢
Bank switching: 6502 s
9FFF
reters to something o
within 64K, but Apple s
.. $C999 can9
/// positions that 64K o oo |
RAM (24K)
window over a larger s
RAM area. o RO WO | rrr
- FIG 2.1
_) Y,
| Chapter 2 of 28 ¢ Apple Computer Inc ¢ 1982 Page 0003 of 0032

B / \ N I< ‘ 3 G ‘ S ‘ I ‘ 2 Apple /// Computer Information e Apple /// Level 2 Service Reference Manual

FFEF: bank register. Controls , "”"—— Memory Map
1900 RAM 8K 128K
what bank is switched into

$2000 BANK @

the address space.

$400¢

$5000

O=bank 0, 1=bank 1... aal ECLEL x kA G20

$790¢
$800¢

$9007

The "easy" way to deal with

3AG00

banked memory is to pick

$820¢

Cgog

which bank is in 2000-9FFF

$0920 RAM (24K)

and then manipulate W
memory in there. Swap

banks it you want to

Chapter 2 of 28 o Apple Computer Inc ® 1982 Page 0003 of 0032

manipulate other memory.

B A N I< R I G ‘ S T : R Apple /// Computer Information e Apple /// Level 2 Service Reference Manual
. 2 @copia computear inc.
Except where is your program? | Memory Map
s100¢ RAM @K 128K
Text memory (400-CO00) lives below u

$2000 BANK @

the banked area, always there, but

$3de2

might be on screen. -
$5000

Graphics memory (2000-9FFF) lives in T s o R
$790¢

bank O (only!). -

$9007

9FFF

SOS claims A0OO up, text memory

(800-FFF) and zero pages and stacks o

eat up a lot below 2000. S92
p 0900 RAM (24K) m

Not much to work with, and God s

Help You if you switch out the bank Lo
your code is running in. SOS 1.3
actually doesn't start until $B800
though.

FFFF

Chapter 2 of 28 o Apple Computer Inc ® 1982 Page 0003 of 0032

EXTENDED ADDRESSING

There is a special addressing trick to read/write data in
other banks.

The 6502 can only address 8 bits, but the Apple /// under
certain circumstances will take the 6502's address and

combine it with a bank address, and tfake the 6502 out.

The 6502 asks for the byte at $1000. The Apple /// checks
the bank address, grabs the $1000 byte from the selected
byte, and hands it to the 6502. The 6502 just thinks it is
$1000, it knows nothing of banks.

Same basic trickery as the relocatable ZP/stack.

EXTENDED ADDRESSING

f your ZP is pointed at $1AQ0 (the default SOS
orovides for user programs), then:

Store lower 16 bits of address at a ZP pointer, say $20.

Store bank address in the $1600 page, parallel to the
high byte of the pointer. $1621.

Using addressing mode (ZP), y will interact with
memory thus designated. Only that addressing mode.

READING FROM BANK 2, 3, 0.

LDA #3$1A LDA #$1A

STA $FFDO , LP=1A STA $FFDO , LP=1A

LDA #%00 LDA #300

STA $20 , ADDRL STA $20 , ADDRL

LDA #%$90 LDA #3$10

STA $21 , ADDRH STA $21 , ADDRH

LDA #%$82 , BANK 2 LDA #53%83 ; BANK 3
STA $1621 , XBYTE STA $1621 , XBYTE

LDY #%00 LDY #3000

LDA ($20), Y LDA ($20), Y

Bank in X-byte is $0000-7FFF. Next bank up is in $8000-FFFF.

"Bank 2" address $2000 = "bank 3" address $1000.

"Bank F" is special, regular memory map with bank 0 in $2000-$9FFF and the
unbanked memory around it. Only parallel way to access first $100 bytes of
bank 0, also allows reading data "under" the VIAs in $FFDx and $FFEx.

POINTER + $1601??

Why pointer+$16017?

RAZZLE-ZLE

Why "if your ZP is at $1A00"? : :
r Peeking and Poking

4L QV IO”"]EPPSO” at Apple want you not to do. They have provided a great va

I C I S O r riety of “‘legal” ways to use the operating system, such as pow

Picture the Apple II pro er perusi Apple Il Ba- erful language packages, standard drivers that include very

sic Manual. Much nodding and smiling. So powerful, so easy fast graphics, and assembly language modules that may in

. .. S0 many new built-ins. t S calls hey don’t want

y But wait. Something’s missing. Where are they? Try the you messing ating directly. This

$ 1 AOO B u -t $ 1 OOO E . O r- $ (OO contents. Not there. The index? Not in there either. How about policy is not merely to protect trade secrets ile it's true that
[] o

| (John Jeppson, Bank
ALSQO, Extended addressing

only kicks in with ZP between
$18 and $1F. So: not if you've
pointed your ZP at video

Switch Razzle-Dazzle:
Peeking and Poking the
Apple I, Softalk, Aug
1982)

memory.

D ADDRESSING

=X T

L
Z
U
L

Video text memory on the Apple II: $400-7FF

Video circuit pulls values from text memory while the CPU
is busy, deposits them on the screen.

Can display either text page 1 ($400-7FF) or text page 2
($800-BFF). They're located at XOR $0C00 from each
other.

=X T

L
Z
U
L

D ADDRESSING

o get 80-column text, both pages are used, and the

values are interleaved. $400-7FF has the even characters,
$800-BFF has the odd characters.

The hardware has to do this all at the same time, so every

fetch grabs BOTH $400 and $800, then BOTH $401 and
$801, etc.

That is, every fetch of $XXXX also grabs $XXXX XOR
$OCO0 in case it is needed.

EXTENDED ADDRESSING

Suppose you do a LDA ($20), y.

hat will use the bytes in $20 and $21 as a 16-bit
address, and then you will load the accumulator with

what is in that address (plus y).

That's going to grab $0C20 and $0C21 in the shadows
as well. Though that's not super useful, those are
sitting in text page 2 and we can't just freely change

them.

EXTENDED ADDRESSING

However you can point the "zero page" to whatever
Page you want.

f you point the "zero page" to $1AQ0, then when it
goes out to fetch $20, it's really going out to $1A20.
Page 00011010. XOR with 00001100 yields page
00010110. Page 16. And the shadow system will grab
$1620 at the same time.

D ADDRESSING

- XTEND

In summary:

if you use an indirect y-indexed zero-page
addressing mode,

when the zero page is pointed somewhere between
$18 and $1F inclusive,

then the X-byte is used to determine the bank you
are reading/writing.

NEW VIDEO MODE

@iorpia computar inc.

APPLE /// VIDEO

24x80 color text (16
foreground and

INTRODUCTION

The Apple /// has 11 defined video modes of operation. Thers are 5 Apple][
modes and 6 new Apple /// modes. There are now 3 text modes and 8 graphics

b |< d | rS modes. Though the Apple /// can emulate all of the Apple][video modes,
aC grOUH CO O there are many differences in the video hardware between the Apple][and
Apple ///, including:

o 80 column text with full upper and lower case character
capability

560x192 monochrome New color text mode

Super high resolution black and white graphics

2 new color hires modes

140x192 with 16 colors

A modifiable character set

anywhere

The modifiable character set is a major new feature of the Apple ///. You can
now change the character set by changing the pattern in the character
generator. This 1s possible because of a ram, instead of a fixed rom
configuration.

280)(1 92 Wlth 1 6 CO | Ors There are also improved video outputs. An NTSC (National Television Standards
Coumittee) composite Black and White and color composite, plus the primary
video signals, are available at the back panel for mixing into the input of a
O r ra S high quality RBG monitor.
g y The Apple][emulation mode has the very same video modes as the Apple][.
The Apple ///, while in its native mode, can have the following modes.

40-COL TEXT

24x40 Apple |l

familiar ($400, $800)
24x40 Apple ///

one page has the text

the other has the colors
(high=bg, low=tg)

Both can "flip."

40 Character Apple ///

This second 40 character text mode is the most interesting and, in a way, the
most powerful. This is the only color text mode. It has the same screen
resolution as the Apple][, and the same video attributes. BUT it also has
the ability to select both the color of the foreground (dots) and the color of
the background. Sixteen (16) colors are available as in the Apple][Lores
Graphics.

o The color resolution can be selected for each character and can change
for each character.

It is interesting to note that by down loading a character set, a new
low resolution graphics mode can be manufactured from a text mode.

The page mode is different for this mode since both pages are used at once.
Why? Because the first page contains the character data and the second page
contains the color information. The page 2 mode reverses the mapping, that
is, the characters in page 2 are stored where the color was stored in page 1,
and vice versa.

In the color byte, bits 4-~7 set the foreground color and bits 0-3 set the
background color. The mapping between color and character is 1:1. That is, a
character located in 0409, for example, has its foreground color determined by
the byte in location 0809,

In the page 1 mode the mapping is as follows:
0400-07FF contain the characters
0800-0BFF contain the color information.

In the page 2 mode:
0800~0BFF contain the characters.

0400-07FF contains the color.

40 Character Apple]|

This mode is equivalent to the Apple][text mode. The only difference
has upper and lower characters.

0 The screen is divided into 40 horizontal columns and 24 vertical
lines.

The characters are usually white dots on a black background.
This mode has inverse video and flashing characteristics.

This mode has no color.

This mcde has twc screen pages mapped into memory:
- Page 1 is located at 0400-~07FF

- Page 2 1s located at 0800-0BFF.

80-COL TEXT
BW HIRES 280X192

80-col text. Characters 2 Character Black ¢ Uhite Apple ///

This new text mode is the same as the 40 column mode with the obvious
exception that it has 80 columns instead of 40. This 80 column display has

interl eaved . full upper and lower case, and inverse video.

Unlike the 40 character mode, it does not have 2 distinct pages. It uses both

$400 has the even ghooria computar e
Chara Cte I’S, $800 has the pages to hold the characters.

The memory mapping for Page 1 utilizes:

Od d O N eS 0400-07FF for the primary fetch

0800-0BFF for the secondary.

In this mode, location 0400 contains the first character and 0800 contains the
seconds The third and the fourth characters come from locations 0401 and 0801

BW Hires 280x192

In the Page 2 mode the primary fetch is from 0800-OBFF and the secondary from

0400~07FF. Therefore, the first and third characters come from 0800 and 0801
and the second and fourth come from 0400 and 0401.

Familiar $2000, $4000. The [QEEEEEES

This is a new graphics mode that has a 280 by 192 resolution in Black and
White only.

Apple Il hires mode. Can

'Fl . p Page 1 is located at 2000-3FFF

It has two distinct pages:

Page 2 is located at 4000-5FFF.

Medium Resolution 16 Color Graphics Apple ///

This is a new graphics mode for the Apple ///. It has the same dot resolution

1 6 C O L O R as the Apple][Hires (280 by 192), but it has an expanded color capability of
—_ 16 background colors. The B/W Output will yield 16 levels of grey scale.

The screen is divided into a 40 wide by 192 high matrix. That is, the color

I\/l E D R E S selection for foreground and 16 background can change for each 7 dot [0000000]

pixel segment. You can think of each segment as a one-bit-high slice across a

character space, as illustrated below.

280x192 16 col/grey

. ' t)]
40x192 in groups of 7. e gy e

S ——— ...

2072 1 DH7 817

$2000 are the pixels P ey g 10 i i

Page 1: 2000~3FFF each byte represents 7 pixels in the segment

4000-5FFF each byte represents the foreground and background colors
for the corresponding 2000~3FFF byte.

$ 4000 a re -th e C O | O rS Page 2: 2000-3FFF each byte represents the colors

4000~5FFF each byte represents 7 pixels.

Or they can be tlipped, though not very usetully.

This is the highest resolution 16-color mode, but colors are
constrained, colors can only be set for each group of 7.

SUPER HIRES

560x192 B&W, in blocks of 7 that are drawn alternately
(page 1) from $2000 and $4000.

MSB is not displayed (maybe a place to hide data?).
| SB is leftmost. Page 2 from $6000-9FFF, so CAN FLIP

Super Hires Apple ///

This is the Apple /// Hires equivalent of 80 character mode. It is a Black

and White mode which has the dot resolution of 560 Horizontal by 192 vertical
spaces.

There are two distinct screen pages, each with a primary and secondary page.
Because it is like the 80 character modes, this mode draws its information

from alternating ram. Each memory byte contributes 7 pixels. 1In Page 1 mode,

the primary contains the odd dot groups and the secondary contains the even
dot groups. The primary (first 7 pixels) is located at 2000-3FFF, and the
secondary (second 7 pixels) is found at 4000-5FFF. In Page 2 the primary is

at 6000-7FFF, and the secondary is 8000-9FFF.

In each byte the Most Significant Bit (MSB) 1is ignored and the data 1is
displayed with the Least Significant Bit (LSB) first from left to right.

APPLE /// HIRES

140192, 16 colors. "A bit difficult to master.
Good luck!" 4 color bits per pixel. CAN FLIP.

0: 2000: 00001111

1: 2000: 01110000 + 4000: 00000001
2: 4000: 00011110
3: 4000: 01100000 + : 00000011
4 : 00111100

: 00000001 + : 00000111

: 01111000

Apple /// Hires

This is the third new graphics mode. It has 140 by 192 pixel resolution, and
1 of 16 color selection per pixel. 1In this mode the pixel is formed by a
group of four dots of the same color.

There are two distinct screen pages in this mode but the mapping of the
individual pages is, at first encounter, a bit difficult to master. Good luck!

o The display dot represents a sequence of 4 data bits in the ram dis-
play area.

0 Two rams are used starting at 2000 and 4000 respectively and alternate
bytes are fetched from each ram area.

o In any video mode only 7 of the 8 bits of each byte are displayed.

With this information in mind...and remembering that each pixel in this mode
is made from 4 bits...you can see that you need 4 bytes of information
to get 7 pixels. The way in, which these bytes map into picture elements

18 shown below.
It is apparent, from the diagram,

boundaries for 7 picture elements and &4 bytes.
repeats.

that picture elements overlap the byte
The basic pattern then

The four bytes are shifted out i{n a fashion similar to the other Apple ///
modes:

o The first byte
comes from the

comes from the primary and the second byte
secondary.

o The first byte
the secondary.

contains the first pixel and the second byte comes from

o The first byte

contains the first pixel and 3 bits of the second
pixel. g

o The second byte contains the fourth bit of the second pixel, the third
pixel, and the first two bits of the fourth pixel.

o The third byte contains the last two bits of the fourth pixel, the
f1fth pixel, and the first bit of the sixth pixel.

o The fourth byte contains the last three bits of the sixth pixel and
2000°X2001 the entire seventh pixel.
2000-3FFF ‘h = We hope the preceding diagram will help you picture what has already been
- T described.
4000 001
4000-SFEF 077500 D r A For this mode, Page 1 is mapped with the primary fetch in 2000-3FFF, and the
k secondary in 4000-5FFF. In Page 2 the primary is in 6000-7FFF, and the
secondary is in 8000-7FFF.
r.* / \ 4 BYTES / \ N
2000 4000 2001 4001
HNENENEEENEEREEOEENEREEEN
N e e | |
{ pr | p2 | 3 P4 PS P6 P7

VIDEO MEMORY FOR REGIONS

Band 0: Super hires: 2000-5FFF

Band 1: Text: 400-BFF
Band 2: Hires: 2000-5FFF
Band 3: Text: 400-BFF
Band 4: Hires: 2000-5FFF
Band 5: Medres: 2000-5FFF

Fortunately, all graphics modes have the same scan line organization.
So some parts of 2000-5FFF will have super hires data, some will have
hires data, some will have medres data. | did not attempt to flip
graphics bands, though could have used 6000-9FFF for that in parallel.

~
~
~
0
=
%)
~
1
n
<
%
),
),
Z
_
_
O
v
@),
N

SMOOTH SCROLLING

The scrolling operation which is used is somewhat
unusual in that each line of the display is separately
moved up (line-by-line) with one line of data in memory
being moved for each frame. This technique provides a
uniform, esthetically pleasing, scroll. Scrolling the
screen one line per frame can be achieved by moving all
the data in the memory into a new position for each
frame. This would be very time consuming and imprac-
tical. With the described technique, only one-eighth of
the data in the memory is moved for each new frame.

Referring to the adder 121, as mentioned, the signals
V4, VB Vc are the three least significant vertical
counter bits from the counter 5§8. These bits or counts,
by way of example, represent the 8 horizontal lines of
each character. In adder 12, a 3-bit digital signal, VA1,
VB1 and VC1, is added to the count from counter 58.
This 3-bit signal is constant during each frame, how-
ever, it is incremented for each new frame.

During a first frame, 000 is added to the vertical
count. During a second frame, 001 is added; and during
a third frame, 010 is added, and so on. By adding this
digital signal to the count from counter 58, the ad-
dresses to the memory are changed in the vertical sense.
During the first frame when 000 is added, the display
remains unaffected. During the next frame, when 001 is
added to the vertical count, instead of first displaying
the first line of a character, the second line of each
character is displayed at the top of each character space
and each subsequent line of the character is likewise
moved up one line. If data in memory is not moved, the
first line of the character would appear at the bottom of
each character. Note when 001 is added to 111 from the
counter, 000 results. Thus, the first line of characters
would be addressed when the beam is scanning the
eighth line of characters. To prevent this, the data cor-
responding to the first line of each character is moved in
memory for this frame. The first line of one character is
moved up and becomes the bottom line of the character
directly above it. When 010 is added, the process is
again repeated. For example, the third line of each char-
acter is first displayed in each character space and the
second line of each character is moved up to become
the bottom line of the character directly above it. This
process is repeated to scroll the data. The movement of
data in memory is controlled by the CPU in a well-
known manner.

SMOOTH SCROLLING

I: CotS CoE3 (E)
o, (o€ COET ColD

thus select different rows within the memory of FIG. 6.
The scrolling operation which is used is somewhat
unusual in that each line of the display is separately
moved up (line-by-line) with one line of data in memory
being moved for each frame. This technique provides a
uniform, esthetically pleasing, scroll. Scrolling the
screen one line per frame can be achieved by moving all
the data in the memory into a new position for each
frame. This would be very time consuming and imprac-
tical. With the described technique, only one-eighth of
the data in the memory is moved for each new frame.

Referring to the adder 121, as mentioned, the signals
V4, VB Vc are the three least significant vertical
counter bits from the counter 5§8. These bits or counts,
by way of example, represent the 8 horizontal lines of
each character. In adder 12, a 3-bit digital signal, VAL,
VB1 and VC1, is added to the count from counter 58.
This 3-bit signal is constant during each frame, how-
ever, it is incremented for each new frame.

During a first frame, 000 is added to the vertical
count. During a second frame, 001 is added; and during
a third frame, 010 is added, and so on. By adding this
digital signal to the count from counter 58, the ad-
dresses to the memory are changed in the vertical sense.
During the first frame when 000 is added, the display
remains unaffected. During the next frame, when 001 is
added to the vertical count, instead of first displaying
the first line of a character, the second line of each
character is displayed at the top of each character space
and each subsequent line of the character is likewise
moved up one line. If data in memory is not moved, the
first line of the character would appear at the bottom of
each character. Note when 001 is added to 111 from the
counter, 000 results. Thus, the first line of characters
would be addressed when the beam is scanning the
eighth line of characters. To prevent this, the data cor-
responding to the first line of each character is moved in
memory for this frame. The first line of one character is
moved up and becomes the bottom line of the character
directly above it. When 010 is added, the process is
again repeated. For example, the third line of each char-
acter is first displayed in each character space and the
second line of each character is moved up to become
the bottom line of the character directly above it. This
process is repeated to scroll the data. The movement of
data in memory is controlled by the CPU in a well-
known manner.

-

coest

So ceshe D '4ud‘- oyl -

ROUGH SAILING

Moot 230 e oy I

—

lfls?c'(
A md ¢ P ﬁv\"l'f{/
Y =4, e H‘f-‘Lg el W=E(TrhY-227(3
WEL, TzHY-2 < Cd nE=0 o v<3
" Lmz‘(b? 7= 0 o - ,.-L_g_)-u e = 1%
=23, Tz o Hizet (O nMzel T (3 2 (®) 2 o T i B L ‘1)
: 2 [—— oo
& | Co (¢ 1 ! 6 \ _ Ct
X % PPN C4. o I g o
¢ : ™
% T cy
g 197
Ao A% I HT @7 w
P As
ﬂ'll ﬁ?ﬁ o hae /\c'f’lb
g" '2‘;: ;;, VV(AAl; l’h*'l +8
ﬂ? mﬂ; P
Jo Bo do
ZEiy s &
Braz = leehs, 4
2wz 2 it @ A
AP A0 pr A F’xﬁ)‘@ #
@>cs el or (L s‘\'\f/j-g : $~7LL
.
r/@ >@ "f
~ .
1""‘4'&"’ A
A -
TLeHY-23= A (T
27e= L -(D =A2-2=4p
Z7t= Roon o dwﬂ!.n%f_
F ”"B:/M‘—ETL:ﬁ CD"_‘
(’) bis = 20
7l _ ok S
@ N beld. map s MU FR((D>ED)
z !
e df‘ﬂ =mL-TL = ez [,
—€ o
n\or)ino 2 £+ ms fo j'f/ e . TL = M?—,ZS = A /010 bor©

dy I 27 TE
IF T8 £ mp ban-zo
B b (Tg>/y,f> ’ ez (F

L e = bast + MD T
oHos .

bes = 88 0
\]\,()‘

o

7

W’}A/'L‘ olnbaan f0 Huwdti 7 ¢

€7L=Tc Avd Fg

Dzn, Ao 07
2/1’11{0 27C

@- mpy Ao ©7

baw = -x (© >@§

rast - Bast t base + Mp

SMOOTH SCROLLING VS HIRES
VS MAME

Smooth scrolling only functions for "HIRES" display modes.

6
(qm) (qm) (4334)
qu— Pm 6

G R GS | ROM & ROMG'F

| | & d]
s‘/as oS l/c!53 co';o/c cos'u/m;
MY /TEXY GP1~2

Surprisingly, not for text
modes. So it cannot be

used to make a smoothly [EAVAIDIN®
scrolling terminal. MODES

APFLE XIT

%
Q
| &
D
S

T
N

0

MAME will do it for
text modes too, but
scrolls things SIDEWAYS YR

INPUTS TO
Rom GaS
(o033

_I_Qa
m
n

. 4. CHAR ATL Calw) “n“
in text mode. Real 10 cumenenr oy | 0 | 0 | 1 | o
hardware does not do 8¢ CHAR (B/W o |l |l o1l o |
this. Also means | need " AL HIRES (2gox|42. BAv) -.-“
zaoxMz.

to turn off smooth scroll Fab/BkaD HIRESCREWH | + | @ | + | @ |

| SUPER HIRES(Seoxmr, B OV | U | @ | @ |
in non-hires regions. | 140 x192 AHIRES (wsmzoen| 1 [1

CUSTOM
FONT

> B .git
D& .gitignore

8 apple3big.cfg

= buildmap.s
> B demo

B diskhero.bin B

& diskhero.inc

B diskhero.o

& diskhero.s

oo b.s

g map-hires3-data.s

VW e e e e e e

%01111111
%00011100
%00011100

%01111111
%01111110
%01110111
%01100011
%01110111
%01111111
%01110111
%01110111

%00011100
%00100010
%00011100
%01111111
%00001000
%00010100
%00100010
%01100011

%00011100
%00111110
%01101011
%01111111
%01111111
%01100011
%00100010
%00011100

%00011100
%00111110
%01101011
%01101011
%01111111

CHANGING THE FONT

_ots of articles and manuals talk about changing the
font. But not really how.

Apple provides a way using a driver that lets you point
at the font data. That's pretty much the only way
anyone talks about. | am not using drivers.

The font data does not live in addressable RAM. You
cannot change it on the fly. You have to stage it into
some hidden RAM space by putting in special memory
areas and telling the Apple /// to start loading the data.

CHANGING THE FONT

Though | do not know all the details, the transter clearly
happens by leveraging the scan through video memory.

The procedure is to place 8 characters' worth of data
into the text page screen holes, turn on the "scan font
data" switch, and wait for at least one full VBL cycle
(when the video data has all been transferred at least
once). Then, move on to the next set of 8 characters.

You have 128 characters (the other 128 are inverse).

SCREEN HOLES

e Each triplet of lines on the text page has a "screen hole." That is
because each line is 40 characters wide, but each 128 byte boundary
is lined up to the left edge. So:

 firstline: 0 to 39
e second line (down the screen a ways): 40-79
* third line (down the screen further): 80-119
e not displayed (screen holes): 120-127

* More concretely, screen holes are:
o $478-47F, $578-57F, $678-67F, $778-77F
o $4F8-4FF, $5F8-5FF, $6F8-6FF, $7F8-7FF

» Data in here will not affect the screen as it is being drawn.

FONT DATA

We have 64 bytes of screen hole space (8 chunks of 8 bytes). That is
enough to hold font data for 8 characters (font data is 7x8, high bit is
unused).

You'd think that each screen hole would contain one character.

Or maybe that they'd be organized down the screen, with the 8th
character in the 8th byte, 7th in the 7th, etc., with the first raster line in
the first screen hole.

But it is neither of these things. Nor did | find it written down
anywhere. The monitor ROM sets up the characters at startup, but the
data is compressed in a way that makes it opaque. | determined the
actual layout basically through trial and error.

FONT DATA LAYOUT

* In fact, each screen hole contains two bytes of four ditterent characters.
First 4 screen holes contain the first four characters, last 4 screen holes
contain the last four characters. Because Apple can always find a way to
interleave things just one more level.

* The screen holes in page 1 ($400) contain the character data. The screen
holes in page 2 ($800) contain (very redundant) index data indicating
which character this is. So if you are updating character $01, you have to
put 8 $01 values in the page 2 addresses corresponding to the 8
addresses holding the pixel data.

o [|tis likely that this system is "dumb" and you could scatter different
characters' data around somewhat differently (like: have the last bytes
of the first screen hole contain the first line of character $02 and the
second line of character $03, though it is hard to see why you would).

CUSTOM
FONT DATA

Put data in screen holes.

Touch $CODB to turn on font
transfer

Wait for a full VBL cycle (two
interrupts)

Touch $CODA to turn off font
transfer

Anything you don't change
doesn't change (stays as
monitor ROM or SOS set it
up), doesn't hurt anything to
change something to the same

thing it was.

P”f:‘S Bow o g ! %2

47¢]:H Zcﬂ[” Zﬁﬂ £7¢

s f;omzwe:ﬂfﬂﬂzw:ﬂ (F &

s 78 fﬂk‘;:ﬂfﬂ Zcﬂ 4y
Cov C e 7

SF§ I:/) Zaﬂ[ﬂ ZCD‘\ QF§
o 0 veow |

X4 (7; \:4,4](7‘;’?4;4] A2 ¥
rov fowr 3

VF§ F; Fqn:]FquH:]/—lFr
g 4 ~ow S

7¢ F: FqHJF‘fFQH] R2s
now b reo~ 2

6-BIT AUDIO DAC

Often mentioned, but with very little information on how it works.

PB of the FFEx VIA is accessed by $FFEQ. What this is telling us is that the
lower 6 bits of what you write to $FFEO go to the DAC.

Incidentally, the PB6/10O Count Line turns out to be the HBL. Not written
down ANYWHERE | don't think. | only know this HBL trick from Rob
Justice's observations of what Atomic Defense was doing.

PB Port Description

The first 6 lines of the B port are configured to be outputs.

They are inputs
to the sound Generator.

0 The tone generated at the speaker can be varied by changing the bit

values of these lines.

There are 127 possible tone combinations; the missing one turns the

tone off completely.

PB6 {8 connected to the 1/0 Count line. Depending on the devicc in the slots,
the VIA may be programmed to count a certain number of pulses generated or to

determine that only one pulse occurred. Either way, the VIA will generate an
IRQ and set the appropriate bit flag.

The last bit 1s used to wmonitor the NMI (Non Maskable Interrupt) line
generated by the devices in the I/0 slots.

WHAT IS AN AUDIO DAC ANYWAY?

| had no idea how this was supposed to work. What do those 6
bits encode?

My current guess: It seems to encode essentially an amplitude,
and it's tairly straightforward. You produce a sine wave by
raising its value up and then down in a sinusoidal pattern. Do
that repeatedly and the frequency dictates the pitch.

The document says there are 127 different possible tone
combinations, but | can only count to 64 with 6 bits. This is a
typo right? Or maybe | still don't quite understand what those

6 bits do.

RUNNING AUDIO

't appears that the basics of running audio is pretty simple. You just
out the amplitude into the audio register. But if you want to have a
reasonable pitch range and smooth sounding audio, you need to do
that OFTEN and REGULARLY.

An interrupt sounds perfect for this, except that it takes so long to get
in and out of an interrupt handler there's no time left for anything else.

Unfortunately, according to the SOS Device Driver
Writer’'s Guide, the minimum response time to call an inter-
rupt handler is about 160 microseconds, and another 115
microseconds is required to return from the interrupt handler
to whatever was happening before the interrupt occurred. So
even though my interrupt handler takes only 15 microseconds
to execute, the total time required to update the speaker is 290

microseconds. Since the voltage on the speaker has to be

ON THREE changed twice per audio cycle, a sound with a frequency of

e R ghout 1700 Hz consumes ALL of the computer’s processing
/// to the Max #4 time—not exactly an improvement.

...And Things That Go GLEEP
In The Night by Al Evans

PIGGYBACKING AUDIO

| do have a regularly-firing interrupt, though. It goes oft with
certain HBLs in order to do the display mode switches. Since
I'm in there anyway, may as well update the audio then.

Originally, | had the interrupts fire only when | needed to
switch, but changed it so that it will fire every 8 scan lines,
whether a switch is needed or not. That makes it regular.

Except during VBL, which covers the same time as 70 scan
ines (or 8-9 audio samples). So, during VBL | set up a
counting timer that goes off at approximately the same rate,
and do just the audio. Costly, but workable.

GAMEPLAY

After all the technical stuff, also needed to address gameplay. How
to move? How to make the hoarders move? How to keep track of
score”?

Keyboard control is pretty simple, keyboard generates an interrupt,
which stores the pressed key somewhere the main code can read it.

The basic game is mostly event driven, sitting in a loop that just
waits to see if it is supposed to quit, redrawing the playfield and
the score.

The VBL generates the game clock that triggers characters to
move.

DEVELOPMENT

When | started this, | also didn't know anything about cab5, but | used
that as my cross-assembler. Just from the command line, | wasn't about
to also learn how to use Xcode. | may not be using it particularly
correctly. There are probably tfancier things | can do with the memory
and segment configuration.

The program is all in one binary file. Stored to the disk as SOS.INTERP
which gets it to boot. Although A000-B7FF should be sate (though not
endorsed by Apple), the program got big enough | had to move it
down. Meaning that | had to put all the execute-once setup stuff early,
so it was ok for a bank to switch overtop of it.

All it takes to make a bootable program is to compile the binary file to
SOS.INTERP (which includes a header) and store it on a disk (i.e. with
AppleCommander).

PROGRAMMING NOTES

Using a standard lookup table for hires Y-coordinates, | generally set the
/P to the page in graphics memory, and then wrote to graphics with ZP
opcodes, leaving the stack at $100 so that it wouldn't also be onscreen.

Using the stack to push to graphics memory can save some cycles over
using ZP, but then you are limited to using just $78-7F and $F8-FF in ZP
(landing in screen holes), since it the stack is in graphics memory, ZP will
also be.

It would be convenient it extended addressing worked, so you could
read from bank 2 and push into graphics memory—but it doesn't.
Extended addressing requires ZP and stack to be between 18-1F, not on
the graphics pages.

PROGRAMMING NOTES

The colors MAME produces don't really match the ones | see
on the Color Monitor 100. The colors look better on the real

Apple ///.

Also, MAME runs faster, discernibly. The audio sounds better
in MAME.

Which is really because MAME is operating "too well." It's
going too tast, the real Apple /// slows down to TMHz 73% ot
the time, whereas MAME just plows ahead at 2ZMHz. Meaning
that fixing MAME is kind of adding code to make it worse.
Which | guess is kind of fitting tor Apple /// emulation.

CURRENT STATUS

This is the sort of thing that always could be more finished.

Not bug-free yet at time of recording. Traveling downward can
sometimes lead to a crash/hang, and occasionally the audio sound
effects overpower the mode switching and the screen brietly displays

garbage.

Not really a way to win or lose yet. The hoarders are supposed to head
for the disk that's closest to them, but it's not clear that they do. That
needs to work for the ability to drop a distractor disk to work. The map
might be too large to be fun, maybe should start significantly smaller.

Would be nice to think of something to do with the lower medres
region apart from showing a grassy pattern.

FINDING |IT

The code will be available on github to look at (under account
paulhagstrom).

Will try to see it the MAME-in-a-browser on the Internet
Archive will allow this to be played without installing anything.

Part of the point of doing this was to provide an example of
now the various Apple /// technologies could be used. To

nelp future others or future me, by having at least something
that shows how these things are done. So not everyone needs
to keep banging their heads against the level 2 service
reference manual.

