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A P P L E  / / /  I M P R O V E M E N T S

• 128K-256K RAM


• "2MHz" clock speed


• Serial port, Silentype printer 
port


• RGB output, 6 bit audio


• Clock nearly built in


• Custom text character sets

• Chainable disk drives, one 
built in.


• Better keyboard, numeric 
keypad


• 80 columns, lowercase, new 
graphics modes


• Emulation mode for Apple 
IIs circa 1980. 48K Apple II 
Plus.



P R E T T Y  G R E AT  F O R  W R I T I N G  G A M E S ?

• Sophisticated interrupts 
(VBL and more!)


• “Smooth scrolling” 
(hardware scrolling)


• 6-bit DAC audio


• "1.4MHz" speed


• 128K-256K memory


• Multiple zero pages, 
and stacks


• Customizable text fonts


• 140x192 16-color hires 
560x192 b/w super hires 
24x48 color text



B U T  Y E T  T H E R E  A R E  F E W



C U S T O M I Z A B L E  C H A R A C T E R  S E T S

• The Apple /// has its character set in RAM.


• Can animate REALLY FAST.


• Change 56 pixels (7 across, 8 down) with a single write. 
Change an entire horizontal band 280x8 with 40 writes.


• The on/off colors (16 for on, 16 for off) for all 56 pixels 
can be set with a single write.


• With this mechanism, you could write passable games 
even in Business BASIC. They're just text games.



T E X T- B A S E D  G A M E S



R U N N I N G  H O R S E S

• Andy Hertzfeld, 
Apple III System 
Demonstration



T H E  P L A N

• Write an arcade game in assembly language using the new 
graphics modes and enhanced features of the Apple ///.


• Of course, I hadn't written anything in assembly language 
on the Apple ///.


• Nor had I written any arcade games.


• Nor did I really know how the new graphics modes or 
enhanced features of the Apple /// work.


• This was a nearly foolproof plan.



T H E  TA L K

• Basic game plan


• Screen splitting, interrupts, blanking


• Dealing with memory


• Graphics modes 


• Smooth scrolling


• Custom character sets


• Interrupt-driven audio



W H AT  K I N D  O F  G A M E ?
• Screen split into regions to use many 

different graphics modes at once, using the 
HBL signal.


• Use the new graphics modes (560 bw, 140 
full color, 280 constrained color) and color 
text mode.


• Use smooth scrolling to shift pixels vertically, 
much faster than if they had to be drawn.


• Use custom character set to "fake" fast 
graphics.


• Use audio DAC for effects.
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" D I S K H E R O "

• Disks scattered on map.


• You try to get them (to 
image them!) before 
the hoarders do.


• Hoarders seek high 
value disks, can be 
distracted by dropping 
one.


• A bit of a Dung Beetles 
vibe, zoomed in 
viewscreen on a smaller 
map.
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S C R E E N  R E G I O N S

• Top super hires region shows 
"splash" effect when inventory 
changes.


• Text region shows score and 
inventory.


• Hires regions show (portion) of 
larger map that scrolls.


• Text playfield uses custom 
characters as sprites for rapid 
animation.


• Medres region... never figured 
out what to do with that.
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S C R E E N  S P L I T T I N G



B L A N K I N G  I N T E R VA L S

• Trick to screen splitting is to 
make changes when the 
beam is off. HBL or VBL.


• Timing is predictable, but on 
Apple II you don't have a 
VBL or HBL signal, so 
requires some trickery.


• The Apple /// has VBL 
interrupts. And HBL 
interrupts. Piece of cake.
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6 5 2 2  V I A S
• Two VIA chips deal with 

most of the interrupts, 
memory banking, zero page 
placement.


• These are pretty general-
purpose devices. They have 
timers and counters and 
input/output registers. The 
Apple /// connects them to 
specific things.


• You talk to them via the 
addresses FFDx and FFEx.



A P P L E  / / /  L E V E L  2  
S E R V I C E  R E F E R E N C E  
M A N U A L

• This is pretty much the only detailed 
reference to how all of this stuff 
works.


• It is pretty informal in places. And 
wasn't really available to regular 
people in the 1980s.


• There was kind of a lot of figuring 
things out needed.


• Rob Justice's disassembly of Andy 
Hertzfeld's Atomic Defense was 
very helpful in getting started!
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I N T E R R U P T S

• FFCD is the IRQ vector. If we put JMP Somewhere in there, the 
6502 will jump there whenever an interrupt is encountered.


• The interrupt handler needs to save and restore the state 
(AXY), figure out which interrupt woke it up.


• By reading FFED (the E-VIA interrupt enable register), you can 
see what caused the interrupt, and by writing there you can 
clear it.


• Relevant interrupts here are HBL ($20), VBL ($10), Keyboard 
($01), Timer ($02).



I N T E R R U P T  T I M I N G

• Saving and restoring registers burns cycles. TXA, TAX, TYA, TAY 
are 2, PHA is 3, PLA is 4! RTI (return from interrupt) is 6.


• HBLs occur every 65 cycles, and you have 25 cycles while the 
blanking is actually happening. It is basically unworkable to 
count HBLs and switch graphics modes whenever you reach the 
scan line. By the time you're ready to switch, the HBL is over.


• However: You can set the VIA up to count HBLs, and report in 
only every, say, 8. That leaves time to restore the context after 
switching modes, and for doing the actual game logic between 
interrupts.



" 2 M H Z "

• The Apple /// runs its 6502 at 2MHz.


• Sort of. Sometimes.


• It runs at 1MHz when the video memory is going out. Even 
when the processor is set to 2MHz.


• 192 lines of video display (65 cycles each, 12480 cycles total)


• 70 lines of VBL (4550 cycles at 1MHz, so about 9100 cycles 
at 2MHz).


•  73% of the time, running at 1MHz, 27% of the time running 
at 2MHz.



" 2 M H Z "  A N D  M A M E

• MAME does not presently emulate the downshift for video memory.


• On a real ///, ideally shift mode between 65 and 80 cycles in (during the 
HBL after the one that triggered the interrupt). MAME is going to run twice 
as fast, getting through 130-160 cycles in that same time.


• Easy to wind up with something that looks fine in MAME and gets the splits 
all wrong on real hardware because HBLs were missed during processing. 


• To get something that runs on both MAME and real hardware, must switch 
FAST because they get further apart quite quickly. (Also easy to fool yourself 
into thinking your game runs fast enough during development!)


• Very important to set the next 8-line HBL timer immediately in the handler.



I N T E R R U P T  
H A N D L E R

• This is what I have as of 
now. Not sure it's as good 
as it could be. Resets the 
timer by 30 cycles.


• Switches modes in 23 
cycles by referring to 
modes by branch offset 
and modifying itself.


• There's a reason I did not 
lean more on the stack or 
zero page, which is...



P O I N TA B L E  Z E R O - PA G E  A N D  S TA C K
• Apple /// allows you to designate any page as"zero page" and "stack."


• The 6502 can refer to any address in a 64K space using 16-bit 
addresses, but two "pages" of 256 bytes are special.


• On the Apple II, the "zero page" occupies addresses $00 to $FF. The 
6502 has instructions that can interact with these addresses faster, 
because it only takes one byte to specify an address.


• The "stack" occupies $100-1FF, and is a LIFO data store that the 6502 
can stash information in fairly quickly (using pushing and pull 
instructions).


• On the Apple ///, you can specify which page is the zero page, it does 
not need to be $00. So you can interact fast with any page you choose. 
Like, say, the graphics buffer.



P O I N TA B L E  Z E R O - PA G E  A N D  S TA C K

• To set the zero page, you store the value in $FFD0.


• You then have a choice about the stack. It can either be


• adjacent to the zero page 
(ZP EOR #$01, above ZP when odd, below ZP when even)


• at $100


• If ZP is in video memory, true $100 is probably better—since 
alt stack would ALSO be in the graphics buffer. Constrains 
JSR and RTS along with PHA and PLA.


• Chosen via a bit in the Environment Register ($FFDF).



P U S H I N G  T O  T H E  S C R E E N
• You can fill the first text line 

($400-427) with "A"s faster. 
Plus, the 6502 is clocked at 
closer to 2MHz.

LDA #$C1     2

LDX #$27     2


:STA $0400,X  5

DEX          2

BPL :-       2


           364

LDA #$04     2

STA $FFD0    4


LDA #$C1     2

LDX #$27     2


:STA $00,X    4

DEX          2

BPL :-       2


   6+324 = 330

LDA #$05     2

STA $FFD0    4

LDA $FFDF    4

ORA #$20     2

STA $FFDF    4


LDA #$C1     2

LDX #$27     2

TXS          2


:PHA          3

DEX          2

BPL :-       2


  16+286 = 300



P U S H I N G  P I X E L S

• In various places I use either pushing to the screen via 
the stack, or writing to the screen using the zero page.


• But: this means that when an interrupt arrives, I don't 
know where the stack or zero page are. They might be 
onscreen. And it costs more cycles to save state, set 
them to a known value, and restore them than it does 
just to use absolute 16-bit addresses.



1 2 8 - 2 5 6 K

• 6502 can see 64K at 
once.


• But we want more.


• Bank switching: 6502 
refers to something 
within 64K, but Apple 
/// positions that 64K 
window over a larger 
RAM area.



B A N K  R E G I S T E R

• FFEF: bank register. Controls 
what bank is switched into 
the address space.


• 0=bank 0, 1=bank 1...


• The "easy" way to deal with 
banked memory is to pick 
which bank is in 2000-9FFF 
and then manipulate 
memory in there. Swap 
banks if you want to 
manipulate other memory.



B A N K  R E G I S T E R
• Except where is your program?


• Text memory (400-C00) lives below 
the banked area, always there, but 
might be on screen.


• Graphics memory (2000-9FFF) lives in 
bank 0 (only!).


• SOS claims A000 up, text memory 
(800-FFF) and zero pages and stacks 
eat up a lot below 2000.


• Not much to work with, and God 
Help You if you switch out the bank 
your code is running in. SOS 1.3 
actually doesn't start until $B800 
though.



E X T E N D E D  A D D R E S S I N G

• There is a special addressing trick to read/write data in 
other banks.


• The 6502 can only address 8 bits, but the Apple /// under 
certain circumstances will take the 6502's address and 
combine it with a bank address, and fake the 6502 out.


• The 6502 asks for the byte at $1000. The Apple /// checks 
the bank address, grabs the $1000 byte from the selected 
byte, and hands it to the 6502. The 6502 just thinks it is 
$1000, it knows nothing of banks.


• Same basic trickery as the relocatable ZP/stack.



E X T E N D E D  A D D R E S S I N G

• If your ZP is pointed at $1A00 (the default SOS 
provides for user programs), then:


• Store lower 16 bits of address at a ZP pointer, say $20.


• Store bank address in the $1600 page, parallel to the 
high byte of the pointer. $1621. 


• Using addressing mode (ZP), y will interact with 
memory thus designated. Only that addressing mode.



R E A D I N G  F R O M  B A N K  2 ,  3 ,  0 .

• Bank in X-byte is $0000-7FFF. Next bank up is in $8000-FFFF.


• "Bank 2" address $9000 = "bank 3" address $1000.


• "Bank F" is special, regular memory map with bank 0 in $2000-$9FFF and the 
unbanked memory around it. Only parallel way to access first $100 bytes of 
bank 0, also allows reading data "under" the VIAs in $FFDx and $FFEx.

LDA #$1A

STA $FFD0  ;ZP=1A


LDA #$00

STA $20    ;ADDRL

LDA #$90

STA $21    ;ADDRH

LDA #$82   ;BANK 2

STA $1621  ;XBYTE

LDY #$00

LDA ($20), Y


LDA #$1A

STA $FFD0  ;ZP=1A


LDA #$00

STA $20    ;ADDRL

LDA #$10

STA $21    ;ADDRH

LDA #$83   ;BANK 3

STA $1621  ;XBYTE

LDY #$00

LDA ($20), Y




P O I N T E R  +  $ 1 6 0 1 ? ?

• Why pointer+$1601?


• Why "if your ZP is at $1A00"?


• Actual X-byte is at ZP EOR 
$0C00. Which is $1600 for 
$1A00. But $1000 for $1C00.


• ALSO, Extended addressing 
only kicks in with ZP between 
$18 and $1F. So: not if you've 
pointed your ZP at video 
memory.

(John Jeppson, Bank 
Switch Razzle-Dazzle: 
Peeking and Poking the 
Apple III, Softalk, Aug 
1982)
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BANK SWITCH 
RAZZLE-DAZZLE 

Peeking and Poking 
The Apple Ill 

QV 
Picture the Apple II programmer perusing an Apple III Ba-

sic Manual. Much nodding and smiling. So powerful, so easy 
.. . so many new built-ins. 

But wait. Something's missing. Where are they? Try the 
contents . Not there. The index? Not in there either. How about 
the list of reserved words? Here we go: pdl, perform, pop, 
prefix$. Good grief! They've left out peek and poke! 

· Doubtless you're in shock. The Apple III's creators left out 
peek and poke. They say you don't need them, that the Apple 
III's operating system takes care of all that. SOS they call it 
(pronounced "sauce"), the sophisticated operating system. 
Big Brother in binary. 

The weird part is, they're right . You don't really need peek 
and poke. The Apple II has a lot of little peeks and pokes that 
in the Apple III are done directly with Basic statements or by 
writing control codes to the device drivers . And the big pokes-
well, if you're going to insert an assembly language routine, 
there's a proper way to go about it. You're supposed to fire up 
Pascal, use the assembler to encode your machine language 
program, and call up the resulting code as an invokable 
module from Basic. Is this really possible? Certainly. In fact 
we're going to do it right here and now. And what assembly 
language routine shall we write? Why peek and poke, of 
course. Ha! We'll fix '.em. 

What they say is: even if you had peek and poke, it wouldn't 
do you much good. SOS is constantly moving things around in- . 
side. You neyer know where SOS is going to put something, so 
how can you peek at it? To a certain extent this objection is 
valid. SOS loads program segments and places variables wher-
ever it finds room at the moment; only SOS knows where. And 
while most variables remain at the same address once allo-
cated, some don't even do that. If you make a series of assign-
ments to a Basic string: · 

)Xstr$="abc": Xstr$="cdef": Xstr$="ghijk" 

each Xstr$ is stored in a new place. So how do you know where 
to peek? the argument runs. 

Peeking Toms. Of course, you may not want to peek just at 
your own programs. Perhaps what you really want to do is to 
look at the operating system. Sizable chunks of the operating 
system do have reasonably predictable addresses that might 
somehow be exploited. But that is just what those friendly folks 

at Apple want you not to do. They have provided a great va-
riety of "legal" ways to use the operating system, such as pow-
erful language packages, standard drivers that include very 
fast graphics, and assembly language modules that may in-
clude some thirty-six different SOS calls. But they don't want 
you messing around in the operating system directly. This 
policy is not merely to protect trade secrets. While it's true that 
SOS.Kernel, the central part of SOS, is considered proprie-
tary information, Apple Computer has few worries about that. 
You won't soon unravel the complexity of SOS.Kernel unless 
you're so bright that you're wasting a national treasure by 
spending brain time on the task. 

There's a more important reason for keeping peek and poke 
out of applications programs. The Apple ni is not intended to be 
a static, finished product. Rather, it. is an evolving computer 
system. Improvements are expected; ind!)ed, they have 
already begun. And these ill:lprovements will be made to your 
existing machine by simply booting another disk that incor-
porates the changes. Apple wants your programs to run 
properly on the advanced Apple Ills of the future. And they 
will, if you simply conform to the rules and stick to the tools 
provided. If your program uses "carnal knowledge" of the op-
erating system and takes shortcuts by poking some magical 
spot, well, that spot probably won't be there after the next up-
grade . And you'll be back to square one. 

So why write peek and poke? It's not that we harbor an 
overwhelming compulsion to pollute the system with "illegal" 
programs. We 'd just like to know what's going on in there. 

Congratulations, It's a Chip. Like the Apple IT, the Apple ill 
uses the 6502 microprocessor chip. But the 6502 cpu has only a 
two-byte program counter. That is , it handles memory ad-
dresses that are only two bytes, or sixteen bits, long. Now it's 
an inescapable fact that there are just 64K (2A16 = 65,536) dif-
ferent combinations of sixteen binary bits, so it would appear 
that the 6502 limits a computer to 64K bytes of memory. How 
does the Apple III handle four times that much? It turns out 
there are two distinctly different ways to do this: bank switch-
ing and extended addressing . The Apple III uses both. 

Think of the computer as a black box. Imagine that inside 
the box there is a smaller box. We'll call it a "switch box." In· 
side that switch box is the 6502. The function of the switch box 
is to shield the 6502 from the hard realities of life; to delude it 
into thinking that it lives in a nice , simple 64K machine . In 
other words, all the 6502 ever sees-all it knows about-is a 64K 



E X T E N D E D  A D D R E S S I N G

• Video text memory on the Apple II: $400-7FF.


• Video circuit pulls values from text memory while the CPU 
is busy, deposits them on the screen.


• Can display either text page 1 ($400-7FF) or text page 2 
($800-BFF). They're located at XOR $0C00 from each 
other.



E X T E N D E D  A D D R E S S I N G

• To get 80-column text, both pages are used, and the 
values are interleaved. $400-7FF has the even characters, 
$800-BFF has the odd characters.


• The hardware has to do this all at the same time, so every 
fetch grabs BOTH $400 and $800, then BOTH $401 and 
$801, etc.


• That is, every fetch of $XXXX also grabs $XXXX XOR 
$0C00 in case it is needed.



E X T E N D E D  A D D R E S S I N G

• Suppose you do a LDA ($20), y.


• That will use the bytes in $20 and $21 as a 16-bit 
address, and then you will load the accumulator with 
what is in that address (plus y).


• That's going to grab $0C20 and $0C21 in the shadows 
as well. Though that's not super useful, those are 
sitting in text page 2 and we can't just freely change 
them.



E X T E N D E D  A D D R E S S I N G

• However you can point the "zero page" to whatever 
page you want.


• If you point the "zero page" to $1A00, then when it 
goes out to fetch $20, it's really going out to $1A20. 
Page 00011010. XOR with 00001100 yields page 
00010110. Page 16. And the shadow system will grab 
$1620 at the same time.



E X T E N D E D  A D D R E S S I N G

• In summary: 


• if you use an indirect y-indexed zero-page 
addressing mode,


• when the zero page is pointed somewhere between 
$18 and $1F inclusive,


• then the X-byte is used to determine the bank you 
are reading/writing.



N E W  V I D E O  M O D E S

• 24x80 color text (16 
foreground and 
background colors)


• 560x192 monochrome


• 140x192 with 16 colors 
anywhere


• 280x192 with 16 colors 
or grays.



4 0 - C O L  T E X T

• 24x40 Apple II


• familiar ($400, $800)


• 24x40 Apple ///


• one page has the text


• the other has the colors 
(high=bg, low=fg)


• Both can "flip."



8 0 - C O L  T E X T  
B W  H I R E S  2 8 0 X 1 9 2

• 80-col text. Characters 
interleaved.


• $400 has the even 
characters, $800 has the 
odd ones.


• BW Hires 280x192


• Familiar $2000, $4000. The 
Apple II hires mode. Can 
flip.



1 6 - C O L O R  
M E D R E S

• 280x192 16 col/grey


• 40x192 in groups of 7.


• $2000 are the pixels


• $4000 are the colors


• Or they can be flipped, though not very usefully.


• This is the highest resolution 16-color mode, but colors are 
constrained, colors can only be set for each group of 7.



S U P E R  H I R E S

• 560x192 B&W, in blocks of 7 that are drawn alternately 
(page 1) from $2000 and $4000.


• MSB is not displayed (maybe a place to hide data?). 
LSB is leftmost. Page 2 from $6000-9FFF, so CAN FLIP.



A P P L E  / / /  H I R E S
• 140x192, 16 colors. "A bit difficult to master. 

Good luck!" 4 color bits per pixel. CAN FLIP.


• 0: 2000: 00001111


• 1: 2000: 01110000 + 4000: 00000001


• 2: 4000: 00011110


• 3: 4000: 01100000 + 2001: 00000011


• 4: 2001: 00111100


• 5: 2001: 00000001 + 4001: 00000111


• 6: 4001: 01111000



V I D E O  M E M O R Y  F O R  R E G I O N S
• Band 0: Super hires: 2000-5FFF


• Band 1: Text: 400-BFF


• Band 2: Hires: 2000-5FFF


• Band 3: Text: 400-BFF


• Band 4: Hires: 2000-5FFF


• Band 5: Medres: 2000-5FFF


• Fortunately, all graphics modes have the same scan line organization. 
So some parts of 2000-5FFF will have super hires data, some will have 
hires data, some will have medres data. I did not attempt to flip 
graphics bands, though could have used 6000-9FFF for that in parallel.
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S M O O T H  S C R O L L I N G
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10 
development of the Ct and C3 signals is illustrated in 
FIG. 5.) The gates 124, 125 and 126 provide mapping 
compensation within the memory. As the computer and 
memory are presently implemented, the sequence in 

dress signals for the memories (ARO through AR5). The 
multiplexer 119 has four inputs on its pins 3, 4, 5, 6 and 
provides a single output on pin 7, the AR6 address 
signal. (The signals supplied to pins 11, 12 and 13 of 
multiplexer 119 are for clamping purposes only.) S which the various portions of the display are generated 

is not the same as the sequence in which the data is 
removed from memory for display. These gates provide 
compensating addresses and, in effect, cause a remap• 

The AX signal is applied to the pin 14 of each of the 
multiplexers. The signal on this line and the signal ap-
plied to pin 2, determines which of the four inputs is 
coupled to each of the outputs of the multiplexers. The 
AX signal is a RAM timing signal for clocking the first JO 
7 bits and second 7 bits of the multiplexed 14-bit address 
applied to each of the memory devices 106. The other 
control signal to the multiplexers is developed through 
the AND gate 123. The inputs to this gate are the dis-
play signal (DSPL Y) which indicates that the computer IS 
is in a display mode and a clocking signal, specifically a 
1MHz timing signal (ClM). The output of the AND 
gate 123 determines whether the address signals from 
the CPU or the signals associated with the counter 58 of 
FIG. 1 are selected. 20 

Assume for purposes of discussion that the display 
has not been selected, and thus, the output of gate 123 is 
low. The AX signal then selects for pin 7 of multiplexer 
116 first the address signal Ao and then A6- Likewise, 
each of the multiplexers selects an address signal (ex- 25 
cept for those associated with exclusive OR gates 124 
and 125 which shall be discussed). If the display signal 
is high and an output is present from the gate 123, then, 
by way of example, the AX signal first causes the Ht 
signal and then the Vt signal to be connected to the 30 
ARI address line. Similarly, signals corresponding to 
the vertical and horizontal count are coupled to the 
other address lines during display modes. 

The adder 114 is an ordinary digital adder for adding 
two 4-bit digital nibbles and for providing a digital sum 35 
signal. A commercially available adder (Part No. 283) is 
employed. The carry-in terminal (pin 7) is grounded 
and no carry-outs occur since one of the inputs (pin 12) 
is grounded. The adder sums the digital signal corre-
sponding to H3, II. and H, with the digital signal corre- 40 
sponding to V 3, V 4, V 3, V 4. The resultant sum signal is 
coupled to the multiplexers 116, 117 and 118 as illus-
trated. the summing of these horizontal and vertical 
counter signals is used to provide the more dispersed 
mapping as previously discussed. 45 

The adder 121 is identical to adder 114 and is coupled 
to sum the three least significant vertical counter bits 
from the counter 58 (FIG. 2) with the signals V Al, VBl 
and VCl. The sum is selected by the multiplexer 120 
during the high resolution display modes and also dur• so 
ing scrolling as will be described. These sum signals are 
coupled to the multiplexers 117, 118 and 119. During 
the low resolution display modes, the mul(~plexer 120 
couples ground signals or the page 2 02) to the 
multiplexers 117, 118 and 119. (The Pm signal is used SS 
for special mapping purposes, not pertinent to the pres-
ent invention.) During the high resolution modes when 
the display is not being scrolled, the V Al, VB2 and 
VB3 signals are at ground potential and thus no sum• 
ming occurs within adder 121 and the VA, VB and VC 60 
signals are coupled directly to the multiplexers 117, 118 
and 119. 

The address signals Ato. A11, and At3 from the CPU 
are coupled to the multiplexers 117, 118 and 119, re• 
spectively, through exclusive OR gates 124, 125, and 65 
126, respectively. The other input terminals to gates 124 
and 125 receive the C3 signal, while the other input 
terminal of the gate 126 receives the Ct signal. (The 

ping so that the proper sequence is maintained when 
data is read from the memory for the display. These 
gates are shown to provide a complete disclosure of the 
presently preferred embodiment, however, they are not 
critical to the present invention. 

In operation, the circuitry of FIG. 4, as mentioned, 
selects the address signals which are applied to each of 
the memory devices, either from the CPU or counter if 
the display mode is selected. It should be noted that not 
all of the address bits from the CPU are coupled to the 
multiplexers 116 through 119. Some of these address 
bits, as will be described in conjunction with FIG. 5, are 
used to develop the various CAS and AAS signals and 
thus select different rows within the memory of FIG. 6. 

The scrolling operation which is used is somewhat 
unusual in that each line of the display is separately 
moved up Oine-by-line) with one line of data in memory 
being moved for each frame. This technique provides a 
uniform, esthetically pleasing, scroll. Scrolling the 
screen one line per frame can be achieved by moving all 
the data in the memory into a new position for each 
frame. This would be very time consuming and imprac-
tical. With the described technique, only one-eighth of 
the data in the memory is moved for each new frame. 

Referring to the adder 121, as mentioned, the signals 
VA, Vs V c are the three least significant vertical 
counter bits from the counter 58. These bits or counts, 
by way of example, represent the 8 horizontal lines of 
each character. In adder 12, a 3-bit digital signal, V Al, 
VBl and VCl, is added to the count from counter 58. 
This 3-bit signal is constant during each frame, how-
ever, it is incremented for each new frame. 

During a first frame, 000 is added to the vertical 
count. During a second frame, 001 is added; and during 
a third frame, 010 is added, and so on. By adding this 
digital signal to the count from counter 58, the ad-
dresses to the memory are changed in the vertical sense. 
During the first frame when 000 is added, the display 
remains unaffected. During the next frame, when 001 is 
added to the vertical count, instead of first displaying 
the first line of a character, the second line of each 
character is displayed at the top of each character space 
and each subsequent line of the character is likewise 
moved up one line. If data in memory is not moved, the 
first line of the character would appear at the bottom of 
each character. Note when 001 is added to 111 from the 
counter, 000 results. Thus, the first line of characters 
would be addressed when the beam is scanning the 
eighth line of characters. To prevent this, the data cor-
responding to the first line of each character is moved in 
memory for this frame. The first line of one character is 
moved up and becomes the bottom line of the character 
directly above it. When 010 is added, the process is 
again repeated. For example, the third line of each char-
acter is first displayed in each character space and the 
second line of each character is moved up to become 
the bottom line of the character directly above it. This 
process is repeated to scroll the data. The movement of 
data in memory is controlled by the CPU in a well-
known manner. 

l 

Apple /// Computer Information  •  Apple /// Level 2 Service Reference Manual

Apple Computer Inc  •  1982 Page 0556 of 0730

9 
4,383,296 

10 
development of the Ct and C3 signals is illustrated in 
FIG. 5.) The gates 124, 125 and 126 provide mapping 
compensation within the memory. As the computer and 
memory are presently implemented, the sequence in 

dress signals for the memories (ARO through AR5). The 
multiplexer 119 has four inputs on its pins 3, 4, 5, 6 and 
provides a single output on pin 7, the AR6 address 
signal. (The signals supplied to pins 11, 12 and 13 of 
multiplexer 119 are for clamping purposes only.) S which the various portions of the display are generated 

is not the same as the sequence in which the data is 
removed from memory for display. These gates provide 
compensating addresses and, in effect, cause a remap• 

The AX signal is applied to the pin 14 of each of the 
multiplexers. The signal on this line and the signal ap-
plied to pin 2, determines which of the four inputs is 
coupled to each of the outputs of the multiplexers. The 
AX signal is a RAM timing signal for clocking the first JO 
7 bits and second 7 bits of the multiplexed 14-bit address 
applied to each of the memory devices 106. The other 
control signal to the multiplexers is developed through 
the AND gate 123. The inputs to this gate are the dis-
play signal (DSPL Y) which indicates that the computer IS 
is in a display mode and a clocking signal, specifically a 
1MHz timing signal (ClM). The output of the AND 
gate 123 determines whether the address signals from 
the CPU or the signals associated with the counter 58 of 
FIG. 1 are selected. 20 

Assume for purposes of discussion that the display 
has not been selected, and thus, the output of gate 123 is 
low. The AX signal then selects for pin 7 of multiplexer 
116 first the address signal Ao and then A6- Likewise, 
each of the multiplexers selects an address signal (ex- 25 
cept for those associated with exclusive OR gates 124 
and 125 which shall be discussed). If the display signal 
is high and an output is present from the gate 123, then, 
by way of example, the AX signal first causes the Ht 
signal and then the Vt signal to be connected to the 30 
ARI address line. Similarly, signals corresponding to 
the vertical and horizontal count are coupled to the 
other address lines during display modes. 

The adder 114 is an ordinary digital adder for adding 
two 4-bit digital nibbles and for providing a digital sum 35 
signal. A commercially available adder (Part No. 283) is 
employed. The carry-in terminal (pin 7) is grounded 
and no carry-outs occur since one of the inputs (pin 12) 
is grounded. The adder sums the digital signal corre-
sponding to H3, II. and H, with the digital signal corre- 40 
sponding to V 3, V 4, V 3, V 4. The resultant sum signal is 
coupled to the multiplexers 116, 117 and 118 as illus-
trated. the summing of these horizontal and vertical 
counter signals is used to provide the more dispersed 
mapping as previously discussed. 45 

The adder 121 is identical to adder 114 and is coupled 
to sum the three least significant vertical counter bits 
from the counter 58 (FIG. 2) with the signals V Al, VBl 
and VCl. The sum is selected by the multiplexer 120 
during the high resolution display modes and also dur• so 
ing scrolling as will be described. These sum signals are 
coupled to the multiplexers 117, 118 and 119. During 
the low resolution display modes, the mul(~plexer 120 
couples ground signals or the page 2 02) to the 
multiplexers 117, 118 and 119. (The Pm signal is used SS 
for special mapping purposes, not pertinent to the pres-
ent invention.) During the high resolution modes when 
the display is not being scrolled, the V Al, VB2 and 
VB3 signals are at ground potential and thus no sum• 
ming occurs within adder 121 and the VA, VB and VC 60 
signals are coupled directly to the multiplexers 117, 118 
and 119. 

The address signals Ato. A11, and At3 from the CPU 
are coupled to the multiplexers 117, 118 and 119, re• 
spectively, through exclusive OR gates 124, 125, and 65 
126, respectively. The other input terminals to gates 124 
and 125 receive the C3 signal, while the other input 
terminal of the gate 126 receives the Ct signal. (The 

ping so that the proper sequence is maintained when 
data is read from the memory for the display. These 
gates are shown to provide a complete disclosure of the 
presently preferred embodiment, however, they are not 
critical to the present invention. 

In operation, the circuitry of FIG. 4, as mentioned, 
selects the address signals which are applied to each of 
the memory devices, either from the CPU or counter if 
the display mode is selected. It should be noted that not 
all of the address bits from the CPU are coupled to the 
multiplexers 116 through 119. Some of these address 
bits, as will be described in conjunction with FIG. 5, are 
used to develop the various CAS and AAS signals and 
thus select different rows within the memory of FIG. 6. 

The scrolling operation which is used is somewhat 
unusual in that each line of the display is separately 
moved up Oine-by-line) with one line of data in memory 
being moved for each frame. This technique provides a 
uniform, esthetically pleasing, scroll. Scrolling the 
screen one line per frame can be achieved by moving all 
the data in the memory into a new position for each 
frame. This would be very time consuming and imprac-
tical. With the described technique, only one-eighth of 
the data in the memory is moved for each new frame. 

Referring to the adder 121, as mentioned, the signals 
VA, Vs V c are the three least significant vertical 
counter bits from the counter 58. These bits or counts, 
by way of example, represent the 8 horizontal lines of 
each character. In adder 12, a 3-bit digital signal, V Al, 
VBl and VCl, is added to the count from counter 58. 
This 3-bit signal is constant during each frame, how-
ever, it is incremented for each new frame. 

During a first frame, 000 is added to the vertical 
count. During a second frame, 001 is added; and during 
a third frame, 010 is added, and so on. By adding this 
digital signal to the count from counter 58, the ad-
dresses to the memory are changed in the vertical sense. 
During the first frame when 000 is added, the display 
remains unaffected. During the next frame, when 001 is 
added to the vertical count, instead of first displaying 
the first line of a character, the second line of each 
character is displayed at the top of each character space 
and each subsequent line of the character is likewise 
moved up one line. If data in memory is not moved, the 
first line of the character would appear at the bottom of 
each character. Note when 001 is added to 111 from the 
counter, 000 results. Thus, the first line of characters 
would be addressed when the beam is scanning the 
eighth line of characters. To prevent this, the data cor-
responding to the first line of each character is moved in 
memory for this frame. The first line of one character is 
moved up and becomes the bottom line of the character 
directly above it. When 010 is added, the process is 
again repeated. For example, the third line of each char-
acter is first displayed in each character space and the 
second line of each character is moved up to become 
the bottom line of the character directly above it. This 
process is repeated to scroll the data. The movement of 
data in memory is controlled by the CPU in a well-
known manner. 
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development of the Ct and C3 signals is illustrated in 
FIG. 5.) The gates 124, 125 and 126 provide mapping 
compensation within the memory. As the computer and 
memory are presently implemented, the sequence in 

dress signals for the memories (ARO through AR5). The 
multiplexer 119 has four inputs on its pins 3, 4, 5, 6 and 
provides a single output on pin 7, the AR6 address 
signal. (The signals supplied to pins 11, 12 and 13 of 
multiplexer 119 are for clamping purposes only.) S which the various portions of the display are generated 

is not the same as the sequence in which the data is 
removed from memory for display. These gates provide 
compensating addresses and, in effect, cause a remap• 

The AX signal is applied to the pin 14 of each of the 
multiplexers. The signal on this line and the signal ap-
plied to pin 2, determines which of the four inputs is 
coupled to each of the outputs of the multiplexers. The 
AX signal is a RAM timing signal for clocking the first JO 
7 bits and second 7 bits of the multiplexed 14-bit address 
applied to each of the memory devices 106. The other 
control signal to the multiplexers is developed through 
the AND gate 123. The inputs to this gate are the dis-
play signal (DSPL Y) which indicates that the computer IS 
is in a display mode and a clocking signal, specifically a 
1MHz timing signal (ClM). The output of the AND 
gate 123 determines whether the address signals from 
the CPU or the signals associated with the counter 58 of 
FIG. 1 are selected. 20 

Assume for purposes of discussion that the display 
has not been selected, and thus, the output of gate 123 is 
low. The AX signal then selects for pin 7 of multiplexer 
116 first the address signal Ao and then A6- Likewise, 
each of the multiplexers selects an address signal (ex- 25 
cept for those associated with exclusive OR gates 124 
and 125 which shall be discussed). If the display signal 
is high and an output is present from the gate 123, then, 
by way of example, the AX signal first causes the Ht 
signal and then the Vt signal to be connected to the 30 
ARI address line. Similarly, signals corresponding to 
the vertical and horizontal count are coupled to the 
other address lines during display modes. 

The adder 114 is an ordinary digital adder for adding 
two 4-bit digital nibbles and for providing a digital sum 35 
signal. A commercially available adder (Part No. 283) is 
employed. The carry-in terminal (pin 7) is grounded 
and no carry-outs occur since one of the inputs (pin 12) 
is grounded. The adder sums the digital signal corre-
sponding to H3, II. and H, with the digital signal corre- 40 
sponding to V 3, V 4, V 3, V 4. The resultant sum signal is 
coupled to the multiplexers 116, 117 and 118 as illus-
trated. the summing of these horizontal and vertical 
counter signals is used to provide the more dispersed 
mapping as previously discussed. 45 

The adder 121 is identical to adder 114 and is coupled 
to sum the three least significant vertical counter bits 
from the counter 58 (FIG. 2) with the signals V Al, VBl 
and VCl. The sum is selected by the multiplexer 120 
during the high resolution display modes and also dur• so 
ing scrolling as will be described. These sum signals are 
coupled to the multiplexers 117, 118 and 119. During 
the low resolution display modes, the mul(~plexer 120 
couples ground signals or the page 2 02) to the 
multiplexers 117, 118 and 119. (The Pm signal is used SS 
for special mapping purposes, not pertinent to the pres-
ent invention.) During the high resolution modes when 
the display is not being scrolled, the V Al, VB2 and 
VB3 signals are at ground potential and thus no sum• 
ming occurs within adder 121 and the VA, VB and VC 60 
signals are coupled directly to the multiplexers 117, 118 
and 119. 

The address signals Ato. A11, and At3 from the CPU 
are coupled to the multiplexers 117, 118 and 119, re• 
spectively, through exclusive OR gates 124, 125, and 65 
126, respectively. The other input terminals to gates 124 
and 125 receive the C3 signal, while the other input 
terminal of the gate 126 receives the Ct signal. (The 

ping so that the proper sequence is maintained when 
data is read from the memory for the display. These 
gates are shown to provide a complete disclosure of the 
presently preferred embodiment, however, they are not 
critical to the present invention. 

In operation, the circuitry of FIG. 4, as mentioned, 
selects the address signals which are applied to each of 
the memory devices, either from the CPU or counter if 
the display mode is selected. It should be noted that not 
all of the address bits from the CPU are coupled to the 
multiplexers 116 through 119. Some of these address 
bits, as will be described in conjunction with FIG. 5, are 
used to develop the various CAS and AAS signals and 
thus select different rows within the memory of FIG. 6. 

The scrolling operation which is used is somewhat 
unusual in that each line of the display is separately 
moved up Oine-by-line) with one line of data in memory 
being moved for each frame. This technique provides a 
uniform, esthetically pleasing, scroll. Scrolling the 
screen one line per frame can be achieved by moving all 
the data in the memory into a new position for each 
frame. This would be very time consuming and imprac-
tical. With the described technique, only one-eighth of 
the data in the memory is moved for each new frame. 

Referring to the adder 121, as mentioned, the signals 
VA, Vs V c are the three least significant vertical 
counter bits from the counter 58. These bits or counts, 
by way of example, represent the 8 horizontal lines of 
each character. In adder 12, a 3-bit digital signal, V Al, 
VBl and VCl, is added to the count from counter 58. 
This 3-bit signal is constant during each frame, how-
ever, it is incremented for each new frame. 

During a first frame, 000 is added to the vertical 
count. During a second frame, 001 is added; and during 
a third frame, 010 is added, and so on. By adding this 
digital signal to the count from counter 58, the ad-
dresses to the memory are changed in the vertical sense. 
During the first frame when 000 is added, the display 
remains unaffected. During the next frame, when 001 is 
added to the vertical count, instead of first displaying 
the first line of a character, the second line of each 
character is displayed at the top of each character space 
and each subsequent line of the character is likewise 
moved up one line. If data in memory is not moved, the 
first line of the character would appear at the bottom of 
each character. Note when 001 is added to 111 from the 
counter, 000 results. Thus, the first line of characters 
would be addressed when the beam is scanning the 
eighth line of characters. To prevent this, the data cor-
responding to the first line of each character is moved in 
memory for this frame. The first line of one character is 
moved up and becomes the bottom line of the character 
directly above it. When 010 is added, the process is 
again repeated. For example, the third line of each char-
acter is first displayed in each character space and the 
second line of each character is moved up to become 
the bottom line of the character directly above it. This 
process is repeated to scroll the data. The movement of 
data in memory is controlled by the CPU in a well-
known manner. 
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C H A N G I N G  T H E  F O N T

• Lots of articles and manuals talk about changing the 
font. But not really how.


• Apple provides a way using a driver that lets you point 
at the font data. That's pretty much the only way 
anyone talks about. I am not using drivers.


• The font data does not live in addressable RAM. You 
cannot change it on the fly. You have to stage it into 
some hidden RAM space by putting in special memory 
areas and telling the Apple /// to start loading the data.



C H A N G I N G  T H E  F O N T

• Though I do not know all the details, the transfer clearly 
happens by leveraging the scan through video memory.


• The procedure is to place 8 characters' worth of data 
into the text page screen holes, turn on the "scan font 
data" switch, and wait for at least one full VBL cycle 
(when the video data has all been transferred at least 
once). Then, move on to the next set of 8 characters.


• You have 128 characters (the other 128 are inverse).



S C R E E N  H O L E S

• Each triplet of lines on the text page has a "screen hole." That is 
because each line is 40 characters wide, but each 128 byte boundary 
is lined up to the left edge. So:


• first line: 0 to 39


• second line (down the screen a ways): 40-79


• third line (down the screen further):  80-119


• not displayed (screen holes): 120-127


• More concretely, screen holes are:


• $478-47F, $578-57F, $678-67F, $778-77F


• $4F8-4FF, $5F8-5FF, $6F8-6FF, $7F8-7FF


• Data in here will not affect the screen as it is being drawn.



F O N T  D ATA

• We have 64 bytes of screen hole space (8 chunks of 8 bytes). That is 
enough to hold font data for 8 characters (font data is 7x8, high bit is 
unused).


• You'd think that each screen hole would contain one character.


• Or maybe that they'd be organized down the screen, with the 8th 
character in the 8th byte, 7th in the 7th, etc., with the first raster line in 
the first screen hole.


• But it is neither of these things. Nor did I find it written down 
anywhere. The monitor ROM sets up the characters at startup, but the 
data is compressed in a way that makes it opaque. I determined the 
actual layout basically through trial and error.



F O N T  D ATA  L AY O U T

• In fact, each screen hole contains two bytes of four different characters. 
First 4 screen holes contain the first four characters, last 4 screen holes 
contain the last four characters. Because Apple can always find a way to 
interleave things just one more level.


• The screen holes in page 1 ($400) contain the character data. The screen 
holes in page 2 ($800) contain (very redundant) index data indicating 
which character this is. So if you are updating character $01, you have to 
put 8 $01 values in the page 2 addresses corresponding to the 8 
addresses holding the pixel data.


• It is likely that this system is "dumb" and you could scatter different 
characters' data around somewhat differently (like: have the last bytes 
of the first screen hole contain the first line of character $02 and the 
second line of character $03, though it is hard to see why you would).



C U S T O M  
F O N T  D ATA

• Put data in screen holes.


• Touch $C0DB to turn on font 
transfer


• Wait for a full VBL cycle (two 
interrupts)


• Touch $C0DA to turn off font 
transfer


• Anything you don't change 
doesn't change (stays as 
monitor ROM or SOS set it 
up), doesn't hurt anything to 
change something to the same 
thing it was.
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6 - B I T  A U D I O  D A C
• Often mentioned, but with very little information on how it works.


• PB of the FFEx VIA is accessed by $FFE0. What this is telling us is that the 
lower 6 bits of what you write to $FFE0 go to the DAC.


• Incidentally, the PB6/IO Count Line turns out to be the HBL. Not written 
down ANYWHERE I don't think. I only know this HBL trick from Rob 
Justice's observations of what Atomic Defense was doing.
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The processor can, at certain times, read this port for the status of the 
special Apple switch on the keyboard with~u~ distur~ing the keyboard circuit. 

The IRQ* signal is wrapped around to the PA7 line for special diagnostic pur-
poses. 

CLK IRQ* 

The Real Time Clock's interrupt is connected to the CAl line, which is 
programmed to be a negative edge active input. When the clock generates an 
interrupt, it will set the IRA flag in the IFR. The PA port is conditioned 
for non-latching, however, resulting in a basically independent interrupt for 
the clock. 

Keyboard Interrupt 

The keyboard's interrupt is connected to the CA2 input, which is programmed t.o 
be an independent negative edge interrupt. It will set Bit O in the IFR and 
cause the IRQ* line to go low. 

Note: The keyboard can, for the most part, be disabled by disabling the 
interrupt flag for the CA2 line. 

VBL (Vertical Blanking) 

This input can perfon two functions, depending on how the CBl, CB2, and Shift 
Register are programmed. 

o The system may want to be interrupted at each vertical blanking 
cycle. If so, you would program the CB2 line to be an independent 
interrupt OR let it strobe the IPB and set the corresponding bit 
flag. 

o The system may want to synchronize an operation to the display, but 
may not want to be interrupted at each VBL. If this is the case, 
the system can configure the Shift Register to count 8 occurrences 
of the VBL signal. An interrupt will then occur after each set of 
8 Vertical Blanking cycles (about once every second), in sync with 
the display scan. 

PB Port Description 

The first 6 lines of the B port are configured to be outputs. They are inputs 
to the sound Generator. 

o The tone generated at the speaker can be varied by changing the bit 
values of these lines. 

o There are 127 possible tone combinations; the missing one turns the 
tone off completely. 

3.16 
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- comp,Jlxll'n:. 

PB6 1• connected to the I/0 Count line. Depending on the device in the slots, 
the VIA may be progra11Md to count a certain nuaber of pulses generated or to 
determine that only one pulse occurred. Either way, the VIA will generate an 
IRQ and set the appropriate bit flag. 

The bit 1• uaed to aonitor the NKI (Non Haakable Interrupt) line 
generated by the in the t/0 
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W H AT  I S  A N  A U D I O  D A C  A N Y W AY ?

• I had no idea how this was supposed to work. What do those 6 
bits encode?


• My current guess: It seems to encode essentially an amplitude, 
and it's fairly straightforward. You produce a sine wave by 
raising its value up and then down in a sinusoidal pattern. Do 
that repeatedly and the frequency dictates the pitch.


• The document says there are 127 different possible tone 
combinations, but I can only count to 64 with 6 bits. This is a 
typo right? Or maybe I still don't quite understand what those 
6 bits do.



R U N N I N G  A U D I O

• It appears that the basics of running audio is pretty simple. You just 
put the amplitude into the audio register. But if you want to have a 
reasonable pitch range and smooth sounding audio, you need to do 
that OFTEN and REGULARLY.


• An interrupt sounds perfect for this, except that it takes so long to get 
in and out of an interrupt handler there's no time left for anything else.

ON THREE 
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill 

I I I to the Max # 4 
••• And Things That Go GLEEP 
In The Nig_h_t ____________________ 

This month's column concerns making sounds on the Apple 
Ill. I have spent an embarrassing number of hours investigating 
the subject and have grudgingly reached the conclusion that 
the simplest way is the best Theoretically, the Apple Ill has fairly 
powerful sound-generation capabilities. But for reasons which 
will be explained below. it is impractical to make full use of these 
capabilities Instead. we have to rely on a very basic technique 

Stated simply, you make a sound on a computer by I) issu-
ing some instruction which causes a loudspeaker to move. 2) 
waiting some amount of time. and 3) repeating these two steps 
for however long the sound is to be made. If the amount of 
time you wait in step 2) is the same for each repetition. the 
sound is a more-or-less pure tone with a pitch which is an in-
verse function of this time-longer t1me equals lower pitch. 
shorter time equals higher pitch If the amount of time between 
cycles varies randomly, the sound is a noise. If the time IS chang-
ed regularly between cycles. the pitch of the tone or noise 
sweeps up or down. 

There are three ways of access1ng the loudspeaker built into 
the Apple Ill. Th e first is a hardware beep generator generally 
used to signal the user that something is amiss-l'm sure you've 
all heard it It exists because it is sometimes necessary to make 
a noise without any delay in processing For example, if the 
computer receives an ASCII BEL character (CONTROL G) over 
a phone line at high speed and stops processing long enough 
to beep obediently, it may well miss the next character or two. 
With the hardware beep generator. the character causing the 
beep takes no longer to process than any other. This is a very 
useful noisema ker. but with an extremely limited repertoire-
one pitch, one duration. The normal way of accessing it (from 
Pa scal) is to write a CHR (7) to the console. For assembly-
language programmers. the pushbutton for this tone is at 
location SC040 with the 110 space enabled. 

The second way of gaining access to the loudspeaker is the 
one used in the .AUDIO driver provided by Apple. This device 
driver makes lovely pure square-wave tones over 7 I 12 octaves 
at 63 different volumes. Unfortunately, that's al! it does. It's nice 
for playing little tunes. but doesn't provide for any sound ef-
fects. and has no on/off switch. Since I was wnting a game 
and needed these facilities. I decided to explore more deeply 

Deep within the bowels of the computer are two devices 
called 6522 Versatile Interface Adapters (or VIA's for 
short). The VIA is a marvelous chip combining many useful 
functions These two devices are responsible for much of the 
power of your Apple Ill. One of them. the EVIA is used among 
other things. to operate the loudspeaker. Six bits of one of its 
output registers are connected to a simple digital-to-analog (DIA) 
converter which controls the vo ltage on the speaker. In the 
.AUDIO driver (see the Standard Device Drivers 
Manual. pp I 29- I 34), the voltage on the speaker is set ac-
cording to the VOLUME parameter. One of the two timers in 
the VIA is set to the COUNT parameter. while the other is set 
to a constant representing the duration of one unit of the TIME 

parameter. Each time the f1rst t1mer runs down. the voltage on 
the speaker is reversed. Each time the second runs down. the 
TIME remaining is decremented. 

And that is the SIMPLE explanation All of this is done on 
the device driver level. and involves myst1c acts such as 
allocating and deallocating undocumented System Internal 
Resources; setting and clearing the interrupt-inhibit flag clever-
ly but illegally to keep the system happy; and strange routines 
to read six characters either one at a time or all at once. 

I analyzed it thoroughly because with this setup. it 1s possi-
ble to make sounds on an interrupt-driven basis; i e , to 
have the computer go on about its business until the time has 
come to change the voltage on the speaker. then change the 
voltage. then go back to whatever it was do1ng before. Ob-
viously. this is useful in a game-the action and sound can be 
completely independent of each other. Furthermore. only I or 
2% of the time in a sound making routine is spent making 
sounds-the rest is spent JUSt waiting until it's t1me to do 
something This means that an interrupt-driven sound routine 
would be almost free from the standpoint of processor time. 
Encouraged. I wrote an interrupt-driven .AUDIO device driver. 
After five versions. I had to admit defeat It worked. but. 

Unfortunately. according to the SOS Device Driver 
Writer's Guide. the minimum response t1me to call an Inter-
rupt handler is about I 60 microseconds. and another I I 5 
microseconds is required to return from the interrupt handler 
to whatever was happening before the interrupt occurred. So 
even though my interrupt handler takes only I 5 microseconds 
to execute. the total time required to update the speaker is 290 
microseconds. Since the voltage on the speaker has to be 
changed twice per audio cyc le, a sound with a frequency of 
about I 700 Hz consumes ALL of the computer's processing 
time-not exactly an improvement 

And that brings us to sound-producing technique three, one 
with w hich Apple][ programmers will be familiar . Th e speaker 
itself is mapped into the computer's memory at location SC030. 
Any reference to this address (with 1/0 enabled by the environ-
ment register) will result in a tiny click from the speaker. A great 
variety of sounds can be made by controll ing the frequency 
of the clicks in interesting ways. For the reasons above. this 
is the technique I use and recommend. 

I have Apple][ sound routines gathered from many sources 
over the years I have adapted four of my favorites for the Ap-
ple Ill Pascal environment; they are included with this column. 

The Routines 
The first of the four assembly-language routines in .PROC 

NOISE (Program Listing -1 ) produces a white noise 
modified by a lowpass filter which can be swept over a 
range of frequencies The white-noise generating technique 
was originally published in the April, I 980 Byte by J. 
O'Fiaherty he filter and sweep were added by Ray McVay 
in a version published in the September. 1980 Caii-A.P.P.L.E. 

Volume 2 - Number 2 17 

ON THREE 
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill 

I I I to the Max # 4 
••• And Things That Go GLEEP 
In The Nig_h_t ____________________ 

This month's column concerns making sounds on the Apple 
Ill. I have spent an embarrassing number of hours investigating 
the subject and have grudgingly reached the conclusion that 
the simplest way is the best Theoretically, the Apple Ill has fairly 
powerful sound-generation capabilities. But for reasons which 
will be explained below. it is impractical to make full use of these 
capabilities Instead. we have to rely on a very basic technique 

Stated simply, you make a sound on a computer by I) issu-
ing some instruction which causes a loudspeaker to move. 2) 
waiting some amount of time. and 3) repeating these two steps 
for however long the sound is to be made. If the amount of 
time you wait in step 2) is the same for each repetition. the 
sound is a more-or-less pure tone with a pitch which is an in-
verse function of this time-longer t1me equals lower pitch. 
shorter time equals higher pitch If the amount of time between 
cycles varies randomly, the sound is a noise. If the time IS chang-
ed regularly between cycles. the pitch of the tone or noise 
sweeps up or down. 

There are three ways of access1ng the loudspeaker built into 
the Apple Ill. Th e first is a hardware beep generator generally 
used to signal the user that something is amiss-l'm sure you've 
all heard it It exists because it is sometimes necessary to make 
a noise without any delay in processing For example, if the 
computer receives an ASCII BEL character (CONTROL G) over 
a phone line at high speed and stops processing long enough 
to beep obediently, it may well miss the next character or two. 
With the hardware beep generator. the character causing the 
beep takes no longer to process than any other. This is a very 
useful noisema ker. but with an extremely limited repertoire-
one pitch, one duration. The normal way of accessing it (from 
Pa scal) is to write a CHR (7) to the console. For assembly-
language programmers. the pushbutton for this tone is at 
location SC040 with the 110 space enabled. 

The second way of gaining access to the loudspeaker is the 
one used in the .AUDIO driver provided by Apple. This device 
driver makes lovely pure square-wave tones over 7 I 12 octaves 
at 63 different volumes. Unfortunately, that's al! it does. It's nice 
for playing little tunes. but doesn't provide for any sound ef-
fects. and has no on/off switch. Since I was wnting a game 
and needed these facilities. I decided to explore more deeply 

Deep within the bowels of the computer are two devices 
called 6522 Versatile Interface Adapters (or VIA's for 
short). The VIA is a marvelous chip combining many useful 
functions These two devices are responsible for much of the 
power of your Apple Ill. One of them. the EVIA is used among 
other things. to operate the loudspeaker. Six bits of one of its 
output registers are connected to a simple digital-to-analog (DIA) 
converter which controls the vo ltage on the speaker. In the 
.AUDIO driver (see the Standard Device Drivers 
Manual. pp I 29- I 34), the voltage on the speaker is set ac-
cording to the VOLUME parameter. One of the two timers in 
the VIA is set to the COUNT parameter. while the other is set 
to a constant representing the duration of one unit of the TIME 

parameter. Each time the f1rst t1mer runs down. the voltage on 
the speaker is reversed. Each time the second runs down. the 
TIME remaining is decremented. 

And that is the SIMPLE explanation All of this is done on 
the device driver level. and involves myst1c acts such as 
allocating and deallocating undocumented System Internal 
Resources; setting and clearing the interrupt-inhibit flag clever-
ly but illegally to keep the system happy; and strange routines 
to read six characters either one at a time or all at once. 

I analyzed it thoroughly because with this setup. it 1s possi-
ble to make sounds on an interrupt-driven basis; i e , to 
have the computer go on about its business until the time has 
come to change the voltage on the speaker. then change the 
voltage. then go back to whatever it was do1ng before. Ob-
viously. this is useful in a game-the action and sound can be 
completely independent of each other. Furthermore. only I or 
2% of the time in a sound making routine is spent making 
sounds-the rest is spent JUSt waiting until it's t1me to do 
something This means that an interrupt-driven sound routine 
would be almost free from the standpoint of processor time. 
Encouraged. I wrote an interrupt-driven .AUDIO device driver. 
After five versions. I had to admit defeat It worked. but. 

Unfortunately. according to the SOS Device Driver 
Writer's Guide. the minimum response t1me to call an Inter-
rupt handler is about I 60 microseconds. and another I I 5 
microseconds is required to return from the interrupt handler 
to whatever was happening before the interrupt occurred. So 
even though my interrupt handler takes only I 5 microseconds 
to execute. the total time required to update the speaker is 290 
microseconds. Since the voltage on the speaker has to be 
changed twice per audio cyc le, a sound with a frequency of 
about I 700 Hz consumes ALL of the computer's processing 
time-not exactly an improvement 

And that brings us to sound-producing technique three, one 
with w hich Apple][ programmers will be familiar . Th e speaker 
itself is mapped into the computer's memory at location SC030. 
Any reference to this address (with 1/0 enabled by the environ-
ment register) will result in a tiny click from the speaker. A great 
variety of sounds can be made by controll ing the frequency 
of the clicks in interesting ways. For the reasons above. this 
is the technique I use and recommend. 

I have Apple][ sound routines gathered from many sources 
over the years I have adapted four of my favorites for the Ap-
ple Ill Pascal environment; they are included with this column. 

The Routines 
The first of the four assembly-language routines in .PROC 

NOISE (Program Listing -1 ) produces a white noise 
modified by a lowpass filter which can be swept over a 
range of frequencies The white-noise generating technique 
was originally published in the April, I 980 Byte by J. 
O'Fiaherty he filter and sweep were added by Ray McVay 
in a version published in the September. 1980 Caii-A.P.P.L.E. 

Volume 2 - Number 2 17 



P I G G Y B A C K I N G  A U D I O

• I do have a regularly-firing interrupt, though. It goes off with 
certain HBLs in order to do the display mode switches. Since 
I'm in there anyway, may as well update the audio then.


• Originally, I had the interrupts fire only when I needed to 
switch, but changed it so that it will fire every 8 scan lines, 
whether a switch is needed or not. That makes it regular.


• Except during VBL, which covers the same time as 70 scan 
lines (or 8-9 audio samples). So, during VBL I set up a 
counting timer that goes off at approximately the same rate, 
and do just the audio. Costly, but workable.



G A M E P L AY

• After all the technical stuff, also needed to address gameplay. How 
to move? How to make the hoarders move? How to keep track of 
score?


• Keyboard control is pretty simple, keyboard generates an interrupt, 
which stores the pressed key somewhere the main code can read it.


• The basic game is mostly event driven, sitting in a loop that just 
waits to see if it is supposed to quit, redrawing the playfield and 
the score.


• The VBL generates the game clock that triggers characters to 
move.



D E V E L O P M E N T

• When I started this, I also didn't know anything about ca65, but I used 
that as my cross-assembler. Just from the command line, I wasn't about 
to also learn how to use Xcode. I may not be using it particularly 
correctly. There are probably fancier things I can do with the memory 
and segment configuration.


• The program is all in one binary file. Stored to the disk as SOS.INTERP 
which gets it to boot. Although A000-B7FF should be safe (though not 
endorsed by Apple), the program got big enough I had to move it 
down. Meaning that I had to put all the execute-once setup stuff early, 
so it was ok for a bank to switch overtop of it.


• All it takes to make a bootable program is to compile the binary file to 
SOS.INTERP (which includes a header) and store it on a disk (i.e. with 
AppleCommander).



P R O G R A M M I N G  N O T E S

• Using a standard lookup table for hires Y-coordinates, I generally set the 
ZP to the page in graphics memory, and then wrote to graphics with ZP 
opcodes, leaving the stack at $100 so that it wouldn't also be onscreen.


• Using the stack to push to graphics memory can save some cycles over 
using ZP, but then you are limited to using just $78-7F and $F8-FF in ZP 
(landing in screen holes), since if the stack is in graphics memory, ZP will 
also be.


• It would be convenient if extended addressing worked, so you could 
read from bank 2 and push into graphics memory—but it doesn't. 
Extended addressing requires ZP and stack to be between 18-1F, not on 
the graphics pages.



P R O G R A M M I N G  N O T E S

• The colors MAME produces don't really match the ones I see 
on the Color Monitor 100. The colors look better on the real 
Apple ///.


• Also, MAME runs faster, discernibly. The audio sounds better 
in MAME.


• Which is really because MAME is operating "too well." It's 
going too fast, the real Apple /// slows down to 1MHz 73% of 
the time, whereas MAME just plows ahead at 2MHz. Meaning 
that fixing MAME is kind of adding code to make it worse. 
Which I guess is kind of fitting for Apple /// emulation.



C U R R E N T  S TAT U S

• This is the sort of thing that always could be more finished.


• Not bug-free yet at time of recording. Traveling downward can 
sometimes lead to a crash/hang, and occasionally the audio sound 
effects overpower the mode switching and the screen briefly displays 
garbage.


• Not really a way to win or lose yet. The hoarders are supposed to head 
for the disk that's closest to them, but it's not clear that they do. That 
needs to work for the ability to drop a distractor disk to work. The map 
might be too large to be fun, maybe should start significantly smaller.


• Would be nice to think of something to do with the lower medres 
region apart from showing a grassy pattern.



F I N D I N G  I T

• The code will be available on github to look at (under account 
paulhagstrom).


• Will try to see if the MAME-in-a-browser on the Internet 
Archive will allow this to be played without installing anything.


• Part of the point of doing this was to provide an example of 
how the various Apple /// technologies could be used. To 
help future others or future me, by having at least something 
that shows how these things are done. So not everyone needs 
to keep banging their heads against the level 2 service 
reference manual.




