
M A K I N G A N  
A P P L E / / / A R C A D E G A M E

PA U L H A G S T R O M , K A N S A S F E S T 2 0 2 2

A P P L E / / / I M P R O V E M E N T S

• 128K-256K RAM

• "2MHz" clock speed

• Serial port, Silentype printer
port

• RGB output, 6 bit audio

• Clock nearly built in

• Custom text character sets

• Chainable disk drives, one
built in.

• Better keyboard, numeric
keypad

• 80 columns, lowercase, new
graphics modes

• Emulation mode for Apple
IIs circa 1980. 48K Apple II
Plus.

P R E T T Y G R E AT F O R W R I T I N G G A M E S ?

• Sophisticated interrupts
(VBL and more!)

• “Smooth scrolling”
(hardware scrolling)

• 6-bit DAC audio

• "1.4MHz" speed

• 128K-256K memory

• Multiple zero pages,
and stacks

• Customizable text fonts

• 140x192 16-color hires 
560x192 b/w super hires 
24x48 color text

B U T Y E T T H E R E A R E F E W

C U S T O M I Z A B L E C H A R A C T E R S E T S

• The Apple /// has its character set in RAM.

• Can animate REALLY FAST.

• Change 56 pixels (7 across, 8 down) with a single write.
Change an entire horizontal band 280x8 with 40 writes.

• The on/off colors (16 for on, 16 for off) for all 56 pixels
can be set with a single write.

• With this mechanism, you could write passable games
even in Business BASIC. They're just text games.

T E X T- B A S E D G A M E S

R U N N I N G H O R S E S

• Andy Hertzfeld,
Apple III System
Demonstration

T H E P L A N

• Write an arcade game in assembly language using the new
graphics modes and enhanced features of the Apple ///.

• Of course, I hadn't written anything in assembly language
on the Apple ///.

• Nor had I written any arcade games.

• Nor did I really know how the new graphics modes or
enhanced features of the Apple /// work.

• This was a nearly foolproof plan.

T H E TA L K

• Basic game plan

• Screen splitting, interrupts, blanking

• Dealing with memory

• Graphics modes

• Smooth scrolling

• Custom character sets

• Interrupt-driven audio

W H AT K I N D O F G A M E ?
• Screen split into regions to use many

different graphics modes at once, using the
HBL signal.

• Use the new graphics modes (560 bw, 140
full color, 280 constrained color) and color
text mode.

• Use smooth scrolling to shift pixels vertically,
much faster than if they had to be drawn.

• Use custom character set to "fake" fast
graphics.

• Use audio DAC for effects.

fZMe ? rioted ?

uihlowVr

%:
sure .

04 new idea. Goal is to fix all
the dnhs . They hurrying 'dues .
The on hands

.
Son an few .

'☒Atm -
200

you Cm
100Md """[et d Bhs.⑧ $ at hoods
'◦•

or to break
down eBay walls

E⇔

buldmln
Csr of

smooth snob

Ethan

" '"
whacker?
Une Ga-thts

LA→$→ 450
-

u

FER could 4- >

bennet tiles
,

toldMary-L
tn

CAN DO A LITTLE HUD

By spinning 8 rows in

☒ went slowly ,

son cold

."
m tht

¥ gouty-

" D I S K H E R O "

• Disks scattered on map.

• You try to get them (to
image them!) before
the hoarders do.

• Hoarders seek high
value disks, can be
distracted by dropping
one.

• A bit of a Dung Beetles
vibe, zoomed in
viewscreen on a smaller
map.

"

""""
"

"
THUMB

"

SHOWIN 3

Pos 'N

HERO IN

' ÷M ' DDLE .

COLS

S C R E E N R E G I O N S

• Top super hires region shows
"splash" effect when inventory
changes.

• Text region shows score and
inventory.

• Hires regions show (portion) of
larger map that scrolls.

• Text playfield uses custom
characters as sprites for rapid
animation.

• Medres region... never figured
out what to do with that.

HINES

40×2 SCORE

HIRE}

3F

40 40×10 PLAYFIELD

"◦

[140×32
M→

HIRES::: .

S C R E E N S P L I T T I N G

B L A N K I N G I N T E R VA L S

• Trick to screen splitting is to
make changes when the
beam is off. HBL or VBL.

• Timing is predictable, but on
Apple II you don't have a
VBL or HBL signal, so
requires some trickery.

• The Apple /// has VBL
interrupts. And HBL
interrupts. Piece of cake.

€25
CYCLES

" """

>
HBL

AT

1MHz

4550 CYCLE3

(70 LINES)
✓☐ L

MODES WHILEI
'

is

Returning
-

CLEAN
,
NO

FLICKER .

6 5 2 2 V I A S
• Two VIA chips deal with

most of the interrupts,
memory banking, zero page
placement.

• These are pretty general-
purpose devices. They have
timers and counters and
input/output registers. The
Apple /// connects them to
specific things.

• You talk to them via the
addresses FFDx and FFEx.

A P P L E / / / L E V E L 2  
S E R V I C E R E F E R E N C E
M A N U A L

• This is pretty much the only detailed
reference to how all of this stuff
works.

• It is pretty informal in places. And
wasn't really available to regular
people in the 1980s.

• There was kind of a lot of figuring
things out needed.

• Rob Justice's disassembly of Andy
Hertzfeld's Atomic Defense was
very helpful in getting started!

Apple /// Computer Information • Apple /// Level 2 Service Reference Manual

Apple Computer Inc • 1982 Page 0001 of 0730

Apple/// Computer Information

Apple///
Service Reference Manual

,i
f ' r-·· ~::::::s~!l i:

' - ·'fl/ '

Theory of Operation • Servicing Information

Written by Apple Computer • 1982

I N T E R R U P T S

• FFCD is the IRQ vector. If we put JMP Somewhere in there, the
6502 will jump there whenever an interrupt is encountered.

• The interrupt handler needs to save and restore the state
(AXY), figure out which interrupt woke it up.

• By reading FFED (the E-VIA interrupt enable register), you can
see what caused the interrupt, and by writing there you can
clear it.

• Relevant interrupts here are HBL ($20), VBL ($10), Keyboard
($01), Timer ($02).

I N T E R R U P T T I M I N G

• Saving and restoring registers burns cycles. TXA, TAX, TYA, TAY
are 2, PHA is 3, PLA is 4! RTI (return from interrupt) is 6.

• HBLs occur every 65 cycles, and you have 25 cycles while the
blanking is actually happening. It is basically unworkable to
count HBLs and switch graphics modes whenever you reach the
scan line. By the time you're ready to switch, the HBL is over.

• However: You can set the VIA up to count HBLs, and report in
only every, say, 8. That leaves time to restore the context after
switching modes, and for doing the actual game logic between
interrupts.

" 2 M H Z "

• The Apple /// runs its 6502 at 2MHz.

• Sort of. Sometimes.

• It runs at 1MHz when the video memory is going out. Even
when the processor is set to 2MHz.

• 192 lines of video display (65 cycles each, 12480 cycles total)

• 70 lines of VBL (4550 cycles at 1MHz, so about 9100 cycles
at 2MHz).

• 73% of the time, running at 1MHz, 27% of the time running
at 2MHz.

" 2 M H Z " A N D M A M E

• MAME does not presently emulate the downshift for video memory.

• On a real ///, ideally shift mode between 65 and 80 cycles in (during the
HBL after the one that triggered the interrupt). MAME is going to run twice
as fast, getting through 130-160 cycles in that same time.

• Easy to wind up with something that looks fine in MAME and gets the splits
all wrong on real hardware because HBLs were missed during processing.

• To get something that runs on both MAME and real hardware, must switch
FAST because they get further apart quite quickly. (Also easy to fool yourself
into thinking your game runs fast enough during development!)

• Very important to set the next 8-line HBL timer immediately in the handler.

I N T E R R U P T
H A N D L E R

• This is what I have as of
now. Not sure it's as good
as it could be. Resets the
timer by 30 cycles.

• Switches modes in 23
cycles by referring to
modes by branch offset
and modifying itself.

• There's a reason I did not
lean more on the stack or
zero page, which is...

P O I N TA B L E Z E R O - PA G E A N D S TA C K
• Apple /// allows you to designate any page as"zero page" and "stack."

• The 6502 can refer to any address in a 64K space using 16-bit
addresses, but two "pages" of 256 bytes are special.

• On the Apple II, the "zero page" occupies addresses $00 to $FF. The
6502 has instructions that can interact with these addresses faster,
because it only takes one byte to specify an address.

• The "stack" occupies $100-1FF, and is a LIFO data store that the 6502
can stash information in fairly quickly (using pushing and pull
instructions).

• On the Apple ///, you can specify which page is the zero page, it does
not need to be $00. So you can interact fast with any page you choose.
Like, say, the graphics buffer.

P O I N TA B L E Z E R O - PA G E A N D S TA C K

• To set the zero page, you store the value in $FFD0.

• You then have a choice about the stack. It can either be

• adjacent to the zero page 
(ZP EOR #$01, above ZP when odd, below ZP when even)

• at $100

• If ZP is in video memory, true $100 is probably better—since
alt stack would ALSO be in the graphics buffer. Constrains
JSR and RTS along with PHA and PLA.

• Chosen via a bit in the Environment Register ($FFDF).

P U S H I N G T O T H E S C R E E N
• You can fill the first text line

($400-427) with "A"s faster.
Plus, the 6502 is clocked at
closer to 2MHz.

LDA #$C1 2

LDX #$27 2

:STA $0400,X 5

DEX 2

BPL :- 2

 364

LDA #$04 2

STA $FFD0 4

LDA #$C1 2

LDX #$27 2

:STA $00,X 4

DEX 2

BPL :- 2

 6+324 = 330

LDA #$05 2

STA $FFD0 4

LDA $FFDF 4

ORA #$20 2

STA $FFDF 4

LDA #$C1 2

LDX #$27 2

TXS 2

:PHA 3

DEX 2

BPL :- 2

 16+286 = 300

P U S H I N G P I X E L S

• In various places I use either pushing to the screen via
the stack, or writing to the screen using the zero page.

• But: this means that when an interrupt arrives, I don't
know where the stack or zero page are. They might be
onscreen. And it costs more cycles to save state, set
them to a known value, and restore them than it does
just to use absolute 16-bit addresses.

1 2 8 - 2 5 6 K

• 6502 can see 64K at
once.

• But we want more.

• Bank switching: 6502
refers to something
within 64K, but Apple
/// positions that 64K
window over a larger
RAM area.

B A N K R E G I S T E R

• FFEF: bank register. Controls
what bank is switched into
the address space.

• 0=bank 0, 1=bank 1...

• The "easy" way to deal with
banked memory is to pick
which bank is in 2000-9FFF
and then manipulate
memory in there. Swap
banks if you want to
manipulate other memory.

B A N K R E G I S T E R
• Except where is your program?

• Text memory (400-C00) lives below
the banked area, always there, but
might be on screen.

• Graphics memory (2000-9FFF) lives in
bank 0 (only!).

• SOS claims A000 up, text memory
(800-FFF) and zero pages and stacks
eat up a lot below 2000.

• Not much to work with, and God
Help You if you switch out the bank
your code is running in. SOS 1.3
actually doesn't start until $B800
though.

E X T E N D E D A D D R E S S I N G

• There is a special addressing trick to read/write data in
other banks.

• The 6502 can only address 8 bits, but the Apple /// under
certain circumstances will take the 6502's address and
combine it with a bank address, and fake the 6502 out.

• The 6502 asks for the byte at $1000. The Apple /// checks
the bank address, grabs the $1000 byte from the selected
byte, and hands it to the 6502. The 6502 just thinks it is
$1000, it knows nothing of banks.

• Same basic trickery as the relocatable ZP/stack.

E X T E N D E D A D D R E S S I N G

• If your ZP is pointed at $1A00 (the default SOS
provides for user programs), then:

• Store lower 16 bits of address at a ZP pointer, say $20.

• Store bank address in the $1600 page, parallel to the
high byte of the pointer. $1621.

• Using addressing mode (ZP), y will interact with
memory thus designated. Only that addressing mode.

R E A D I N G F R O M B A N K 2 , 3 , 0 .

• Bank in X-byte is $0000-7FFF. Next bank up is in $8000-FFFF.

• "Bank 2" address $9000 = "bank 3" address $1000.

• "Bank F" is special, regular memory map with bank 0 in $2000-$9FFF and the
unbanked memory around it. Only parallel way to access first $100 bytes of
bank 0, also allows reading data "under" the VIAs in $FFDx and $FFEx.

LDA #$1A

STA $FFD0 ;ZP=1A

LDA #$00

STA $20 ;ADDRL

LDA #$90

STA $21 ;ADDRH

LDA #$82 ;BANK 2

STA $1621 ;XBYTE

LDY #$00

LDA ($20), Y

LDA #$1A

STA $FFD0 ;ZP=1A

LDA #$00

STA $20 ;ADDRL

LDA #$10

STA $21 ;ADDRH

LDA #$83 ;BANK 3

STA $1621 ;XBYTE

LDY #$00

LDA ($20), Y

P O I N T E R + $ 1 6 0 1 ? ?

• Why pointer+$1601?

• Why "if your ZP is at $1A00"?

• Actual X-byte is at ZP EOR
$0C00. Which is $1600 for
$1A00. But $1000 for $1C00.

• ALSO, Extended addressing
only kicks in with ZP between
$18 and $1F. So: not if you've
pointed your ZP at video
memory.

(John Jeppson, Bank
Switch Razzle-Dazzle:
Peeking and Poking the
Apple III, Softalk, Aug
1982)

38 G SO[TALK AUGUST 1982

BANK SWITCH
RAZZLE-DAZZLE

Peeking and Poking
The Apple Ill

QV
Picture the Apple II programmer perusing an Apple III Ba-

sic Manual. Much nodding and smiling. So powerful, so easy
.. . so many new built-ins.

But wait. Something's missing. Where are they? Try the
contents . Not there. The index? Not in there either. How about
the list of reserved words? Here we go: pdl, perform, pop,
prefix$. Good grief! They've left out peek and poke!

· Doubtless you're in shock. The Apple III's creators left out
peek and poke. They say you don't need them, that the Apple
III's operating system takes care of all that. SOS they call it
(pronounced "sauce"), the sophisticated operating system.
Big Brother in binary.

The weird part is, they're right . You don't really need peek
and poke. The Apple II has a lot of little peeks and pokes that
in the Apple III are done directly with Basic statements or by
writing control codes to the device drivers . And the big pokes-
well, if you're going to insert an assembly language routine,
there's a proper way to go about it. You're supposed to fire up
Pascal, use the assembler to encode your machine language
program, and call up the resulting code as an invokable
module from Basic. Is this really possible? Certainly. In fact
we're going to do it right here and now. And what assembly
language routine shall we write? Why peek and poke, of
course. Ha! We'll fix '.em.

What they say is: even if you had peek and poke, it wouldn't
do you much good. SOS is constantly moving things around in- .
side. You neyer know where SOS is going to put something, so
how can you peek at it? To a certain extent this objection is
valid. SOS loads program segments and places variables wher-
ever it finds room at the moment; only SOS knows where. And
while most variables remain at the same address once allo-
cated, some don't even do that. If you make a series of assign-
ments to a Basic string: ·

)Xstr$="abc": Xstr$="cdef": Xstr$="ghijk"

each Xstr$ is stored in a new place. So how do you know where
to peek? the argument runs.

Peeking Toms. Of course, you may not want to peek just at
your own programs. Perhaps what you really want to do is to
look at the operating system. Sizable chunks of the operating
system do have reasonably predictable addresses that might
somehow be exploited. But that is just what those friendly folks

at Apple want you not to do. They have provided a great va-
riety of "legal" ways to use the operating system, such as pow-
erful language packages, standard drivers that include very
fast graphics, and assembly language modules that may in-
clude some thirty-six different SOS calls. But they don't want
you messing around in the operating system directly. This
policy is not merely to protect trade secrets. While it's true that
SOS.Kernel, the central part of SOS, is considered proprie-
tary information, Apple Computer has few worries about that.
You won't soon unravel the complexity of SOS.Kernel unless
you're so bright that you're wasting a national treasure by
spending brain time on the task.

There's a more important reason for keeping peek and poke
out of applications programs. The Apple ni is not intended to be
a static, finished product. Rather, it. is an evolving computer
system. Improvements are expected; ind!)ed, they have
already begun. And these ill:lprovements will be made to your
existing machine by simply booting another disk that incor-
porates the changes. Apple wants your programs to run
properly on the advanced Apple Ills of the future. And they
will, if you simply conform to the rules and stick to the tools
provided. If your program uses "carnal knowledge" of the op-
erating system and takes shortcuts by poking some magical
spot, well, that spot probably won't be there after the next up-
grade . And you'll be back to square one.

So why write peek and poke? It's not that we harbor an
overwhelming compulsion to pollute the system with "illegal"
programs. We 'd just like to know what's going on in there.

Congratulations, It's a Chip. Like the Apple IT, the Apple ill
uses the 6502 microprocessor chip. But the 6502 cpu has only a
two-byte program counter. That is , it handles memory ad-
dresses that are only two bytes, or sixteen bits, long. Now it's
an inescapable fact that there are just 64K (2A16 = 65,536) dif-
ferent combinations of sixteen binary bits, so it would appear
that the 6502 limits a computer to 64K bytes of memory. How
does the Apple III handle four times that much? It turns out
there are two distinctly different ways to do this: bank switch-
ing and extended addressing . The Apple III uses both.

Think of the computer as a black box. Imagine that inside
the box there is a smaller box. We'll call it a "switch box." In·
side that switch box is the 6502. The function of the switch box
is to shield the 6502 from the hard realities of life; to delude it
into thinking that it lives in a nice , simple 64K machine . In
other words, all the 6502 ever sees-all it knows about-is a 64K

E X T E N D E D A D D R E S S I N G

• Video text memory on the Apple II: $400-7FF.

• Video circuit pulls values from text memory while the CPU
is busy, deposits them on the screen.

• Can display either text page 1 ($400-7FF) or text page 2
($800-BFF). They're located at XOR $0C00 from each
other.

E X T E N D E D A D D R E S S I N G

• To get 80-column text, both pages are used, and the
values are interleaved. $400-7FF has the even characters,
$800-BFF has the odd characters.

• The hardware has to do this all at the same time, so every
fetch grabs BOTH $400 and $800, then BOTH $401 and
$801, etc.

• That is, every fetch of $XXXX also grabs $XXXX XOR
$0C00 in case it is needed.

E X T E N D E D A D D R E S S I N G

• Suppose you do a LDA ($20), y.

• That will use the bytes in $20 and $21 as a 16-bit
address, and then you will load the accumulator with
what is in that address (plus y).

• That's going to grab $0C20 and $0C21 in the shadows
as well. Though that's not super useful, those are
sitting in text page 2 and we can't just freely change
them.

E X T E N D E D A D D R E S S I N G

• However you can point the "zero page" to whatever
page you want.

• If you point the "zero page" to $1A00, then when it
goes out to fetch $20, it's really going out to $1A20.
Page 00011010. XOR with 00001100 yields page
00010110. Page 16. And the shadow system will grab
$1620 at the same time.

E X T E N D E D A D D R E S S I N G

• In summary:

• if you use an indirect y-indexed zero-page
addressing mode,

• when the zero page is pointed somewhere between
$18 and $1F inclusive,

• then the X-byte is used to determine the bank you
are reading/writing.

N E W V I D E O M O D E S

• 24x80 color text (16
foreground and
background colors)

• 560x192 monochrome

• 140x192 with 16 colors
anywhere

• 280x192 with 16 colors
or grays.

4 0 - C O L T E X T

• 24x40 Apple II

• familiar ($400, $800)

• 24x40 Apple ///

• one page has the text

• the other has the colors
(high=bg, low=fg)

• Both can "flip."

8 0 - C O L T E X T  
B W H I R E S 2 8 0 X 1 9 2

• 80-col text. Characters
interleaved.

• $400 has the even
characters, $800 has the
odd ones.

• BW Hires 280x192

• Familiar $2000, $4000. The
Apple II hires mode. Can
flip.

1 6 - C O L O R  
M E D R E S

• 280x192 16 col/grey

• 40x192 in groups of 7.

• $2000 are the pixels

• $4000 are the colors

• Or they can be flipped, though not very usefully.

• This is the highest resolution 16-color mode, but colors are
constrained, colors can only be set for each group of 7.

S U P E R H I R E S

• 560x192 B&W, in blocks of 7 that are drawn alternately
(page 1) from $2000 and $4000.

• MSB is not displayed (maybe a place to hide data?). 
LSB is leftmost. Page 2 from $6000-9FFF, so CAN FLIP.

A P P L E / / / H I R E S
• 140x192, 16 colors. "A bit difficult to master.

Good luck!" 4 color bits per pixel. CAN FLIP.

• 0: 2000: 00001111

• 1: 2000: 01110000 + 4000: 00000001

• 2: 4000: 00011110

• 3: 4000: 01100000 + 2001: 00000011

• 4: 2001: 00111100

• 5: 2001: 00000001 + 4001: 00000111

• 6: 4001: 01111000

V I D E O M E M O R Y F O R R E G I O N S
• Band 0: Super hires: 2000-5FFF

• Band 1: Text: 400-BFF

• Band 2: Hires: 2000-5FFF

• Band 3: Text: 400-BFF

• Band 4: Hires: 2000-5FFF

• Band 5: Medres: 2000-5FFF

• Fortunately, all graphics modes have the same scan line organization.
So some parts of 2000-5FFF will have super hires data, some will have
hires data, some will have medres data. I did not attempt to flip
graphics bands, though could have used 6000-9FFF for that in parallel.

S C R O L L I N G G R A P H I C S , I I V S / / /

÷
:!÷ÉÉÉ¥É:÷÷¥É /

÷
:! ÷:÷¥É¥

👍👎

S M O O T H S C R O L L I N G

Apple /// Computer Information • Apple /// Level 2 Service Reference Manual

Apple Computer Inc • 1982 Page 0556 of 0730

9
4,383,296

10
development of the Ct and C3 signals is illustrated in
FIG. 5.) The gates 124, 125 and 126 provide mapping
compensation within the memory. As the computer and
memory are presently implemented, the sequence in

dress signals for the memories (ARO through AR5). The
multiplexer 119 has four inputs on its pins 3, 4, 5, 6 and
provides a single output on pin 7, the AR6 address
signal. (The signals supplied to pins 11, 12 and 13 of
multiplexer 119 are for clamping purposes only.) S which the various portions of the display are generated

is not the same as the sequence in which the data is
removed from memory for display. These gates provide
compensating addresses and, in effect, cause a remap•

The AX signal is applied to the pin 14 of each of the
multiplexers. The signal on this line and the signal ap-
plied to pin 2, determines which of the four inputs is
coupled to each of the outputs of the multiplexers. The
AX signal is a RAM timing signal for clocking the first JO
7 bits and second 7 bits of the multiplexed 14-bit address
applied to each of the memory devices 106. The other
control signal to the multiplexers is developed through
the AND gate 123. The inputs to this gate are the dis-
play signal (DSPL Y) which indicates that the computer IS
is in a display mode and a clocking signal, specifically a
1MHz timing signal (ClM). The output of the AND
gate 123 determines whether the address signals from
the CPU or the signals associated with the counter 58 of
FIG. 1 are selected. 20

Assume for purposes of discussion that the display
has not been selected, and thus, the output of gate 123 is
low. The AX signal then selects for pin 7 of multiplexer
116 first the address signal Ao and then A6- Likewise,
each of the multiplexers selects an address signal (ex- 25
cept for those associated with exclusive OR gates 124
and 125 which shall be discussed). If the display signal
is high and an output is present from the gate 123, then,
by way of example, the AX signal first causes the Ht
signal and then the Vt signal to be connected to the 30
ARI address line. Similarly, signals corresponding to
the vertical and horizontal count are coupled to the
other address lines during display modes.

The adder 114 is an ordinary digital adder for adding
two 4-bit digital nibbles and for providing a digital sum 35
signal. A commercially available adder (Part No. 283) is
employed. The carry-in terminal (pin 7) is grounded
and no carry-outs occur since one of the inputs (pin 12)
is grounded. The adder sums the digital signal corre-
sponding to H3, II. and H, with the digital signal corre- 40
sponding to V 3, V 4, V 3, V 4. The resultant sum signal is
coupled to the multiplexers 116, 117 and 118 as illus-
trated. the summing of these horizontal and vertical
counter signals is used to provide the more dispersed
mapping as previously discussed. 45

The adder 121 is identical to adder 114 and is coupled
to sum the three least significant vertical counter bits
from the counter 58 (FIG. 2) with the signals V Al, VBl
and VCl. The sum is selected by the multiplexer 120
during the high resolution display modes and also dur• so
ing scrolling as will be described. These sum signals are
coupled to the multiplexers 117, 118 and 119. During
the low resolution display modes, the mul(~plexer 120
couples ground signals or the page 2 02) to the
multiplexers 117, 118 and 119. (The Pm signal is used SS
for special mapping purposes, not pertinent to the pres-
ent invention.) During the high resolution modes when
the display is not being scrolled, the V Al, VB2 and
VB3 signals are at ground potential and thus no sum•
ming occurs within adder 121 and the VA, VB and VC 60
signals are coupled directly to the multiplexers 117, 118
and 119.

The address signals Ato. A11, and At3 from the CPU
are coupled to the multiplexers 117, 118 and 119, re•
spectively, through exclusive OR gates 124, 125, and 65
126, respectively. The other input terminals to gates 124
and 125 receive the C3 signal, while the other input
terminal of the gate 126 receives the Ct signal. (The

ping so that the proper sequence is maintained when
data is read from the memory for the display. These
gates are shown to provide a complete disclosure of the
presently preferred embodiment, however, they are not
critical to the present invention.

In operation, the circuitry of FIG. 4, as mentioned,
selects the address signals which are applied to each of
the memory devices, either from the CPU or counter if
the display mode is selected. It should be noted that not
all of the address bits from the CPU are coupled to the
multiplexers 116 through 119. Some of these address
bits, as will be described in conjunction with FIG. 5, are
used to develop the various CAS and AAS signals and
thus select different rows within the memory of FIG. 6.

The scrolling operation which is used is somewhat
unusual in that each line of the display is separately
moved up Oine-by-line) with one line of data in memory
being moved for each frame. This technique provides a
uniform, esthetically pleasing, scroll. Scrolling the
screen one line per frame can be achieved by moving all
the data in the memory into a new position for each
frame. This would be very time consuming and imprac-
tical. With the described technique, only one-eighth of
the data in the memory is moved for each new frame.

Referring to the adder 121, as mentioned, the signals
VA, Vs V c are the three least significant vertical
counter bits from the counter 58. These bits or counts,
by way of example, represent the 8 horizontal lines of
each character. In adder 12, a 3-bit digital signal, V Al,
VBl and VCl, is added to the count from counter 58.
This 3-bit signal is constant during each frame, how-
ever, it is incremented for each new frame.

During a first frame, 000 is added to the vertical
count. During a second frame, 001 is added; and during
a third frame, 010 is added, and so on. By adding this
digital signal to the count from counter 58, the ad-
dresses to the memory are changed in the vertical sense.
During the first frame when 000 is added, the display
remains unaffected. During the next frame, when 001 is
added to the vertical count, instead of first displaying
the first line of a character, the second line of each
character is displayed at the top of each character space
and each subsequent line of the character is likewise
moved up one line. If data in memory is not moved, the
first line of the character would appear at the bottom of
each character. Note when 001 is added to 111 from the
counter, 000 results. Thus, the first line of characters
would be addressed when the beam is scanning the
eighth line of characters. To prevent this, the data cor-
responding to the first line of each character is moved in
memory for this frame. The first line of one character is
moved up and becomes the bottom line of the character
directly above it. When 010 is added, the process is
again repeated. For example, the third line of each char-
acter is first displayed in each character space and the
second line of each character is moved up to become
the bottom line of the character directly above it. This
process is repeated to scroll the data. The movement of
data in memory is controlled by the CPU in a well-
known manner.

l

Apple /// Computer Information • Apple /// Level 2 Service Reference Manual

Apple Computer Inc • 1982 Page 0556 of 0730

9
4,383,296

10
development of the Ct and C3 signals is illustrated in
FIG. 5.) The gates 124, 125 and 126 provide mapping
compensation within the memory. As the computer and
memory are presently implemented, the sequence in

dress signals for the memories (ARO through AR5). The
multiplexer 119 has four inputs on its pins 3, 4, 5, 6 and
provides a single output on pin 7, the AR6 address
signal. (The signals supplied to pins 11, 12 and 13 of
multiplexer 119 are for clamping purposes only.) S which the various portions of the display are generated

is not the same as the sequence in which the data is
removed from memory for display. These gates provide
compensating addresses and, in effect, cause a remap•

The AX signal is applied to the pin 14 of each of the
multiplexers. The signal on this line and the signal ap-
plied to pin 2, determines which of the four inputs is
coupled to each of the outputs of the multiplexers. The
AX signal is a RAM timing signal for clocking the first JO
7 bits and second 7 bits of the multiplexed 14-bit address
applied to each of the memory devices 106. The other
control signal to the multiplexers is developed through
the AND gate 123. The inputs to this gate are the dis-
play signal (DSPL Y) which indicates that the computer IS
is in a display mode and a clocking signal, specifically a
1MHz timing signal (ClM). The output of the AND
gate 123 determines whether the address signals from
the CPU or the signals associated with the counter 58 of
FIG. 1 are selected. 20

Assume for purposes of discussion that the display
has not been selected, and thus, the output of gate 123 is
low. The AX signal then selects for pin 7 of multiplexer
116 first the address signal Ao and then A6- Likewise,
each of the multiplexers selects an address signal (ex- 25
cept for those associated with exclusive OR gates 124
and 125 which shall be discussed). If the display signal
is high and an output is present from the gate 123, then,
by way of example, the AX signal first causes the Ht
signal and then the Vt signal to be connected to the 30
ARI address line. Similarly, signals corresponding to
the vertical and horizontal count are coupled to the
other address lines during display modes.

The adder 114 is an ordinary digital adder for adding
two 4-bit digital nibbles and for providing a digital sum 35
signal. A commercially available adder (Part No. 283) is
employed. The carry-in terminal (pin 7) is grounded
and no carry-outs occur since one of the inputs (pin 12)
is grounded. The adder sums the digital signal corre-
sponding to H3, II. and H, with the digital signal corre- 40
sponding to V 3, V 4, V 3, V 4. The resultant sum signal is
coupled to the multiplexers 116, 117 and 118 as illus-
trated. the summing of these horizontal and vertical
counter signals is used to provide the more dispersed
mapping as previously discussed. 45

The adder 121 is identical to adder 114 and is coupled
to sum the three least significant vertical counter bits
from the counter 58 (FIG. 2) with the signals V Al, VBl
and VCl. The sum is selected by the multiplexer 120
during the high resolution display modes and also dur• so
ing scrolling as will be described. These sum signals are
coupled to the multiplexers 117, 118 and 119. During
the low resolution display modes, the mul(~plexer 120
couples ground signals or the page 2 02) to the
multiplexers 117, 118 and 119. (The Pm signal is used SS
for special mapping purposes, not pertinent to the pres-
ent invention.) During the high resolution modes when
the display is not being scrolled, the V Al, VB2 and
VB3 signals are at ground potential and thus no sum•
ming occurs within adder 121 and the VA, VB and VC 60
signals are coupled directly to the multiplexers 117, 118
and 119.

The address signals Ato. A11, and At3 from the CPU
are coupled to the multiplexers 117, 118 and 119, re•
spectively, through exclusive OR gates 124, 125, and 65
126, respectively. The other input terminals to gates 124
and 125 receive the C3 signal, while the other input
terminal of the gate 126 receives the Ct signal. (The

ping so that the proper sequence is maintained when
data is read from the memory for the display. These
gates are shown to provide a complete disclosure of the
presently preferred embodiment, however, they are not
critical to the present invention.

In operation, the circuitry of FIG. 4, as mentioned,
selects the address signals which are applied to each of
the memory devices, either from the CPU or counter if
the display mode is selected. It should be noted that not
all of the address bits from the CPU are coupled to the
multiplexers 116 through 119. Some of these address
bits, as will be described in conjunction with FIG. 5, are
used to develop the various CAS and AAS signals and
thus select different rows within the memory of FIG. 6.

The scrolling operation which is used is somewhat
unusual in that each line of the display is separately
moved up Oine-by-line) with one line of data in memory
being moved for each frame. This technique provides a
uniform, esthetically pleasing, scroll. Scrolling the
screen one line per frame can be achieved by moving all
the data in the memory into a new position for each
frame. This would be very time consuming and imprac-
tical. With the described technique, only one-eighth of
the data in the memory is moved for each new frame.

Referring to the adder 121, as mentioned, the signals
VA, Vs V c are the three least significant vertical
counter bits from the counter 58. These bits or counts,
by way of example, represent the 8 horizontal lines of
each character. In adder 12, a 3-bit digital signal, V Al,
VBl and VCl, is added to the count from counter 58.
This 3-bit signal is constant during each frame, how-
ever, it is incremented for each new frame.

During a first frame, 000 is added to the vertical
count. During a second frame, 001 is added; and during
a third frame, 010 is added, and so on. By adding this
digital signal to the count from counter 58, the ad-
dresses to the memory are changed in the vertical sense.
During the first frame when 000 is added, the display
remains unaffected. During the next frame, when 001 is
added to the vertical count, instead of first displaying
the first line of a character, the second line of each
character is displayed at the top of each character space
and each subsequent line of the character is likewise
moved up one line. If data in memory is not moved, the
first line of the character would appear at the bottom of
each character. Note when 001 is added to 111 from the
counter, 000 results. Thus, the first line of characters
would be addressed when the beam is scanning the
eighth line of characters. To prevent this, the data cor-
responding to the first line of each character is moved in
memory for this frame. The first line of one character is
moved up and becomes the bottom line of the character
directly above it. When 010 is added, the process is
again repeated. For example, the third line of each char-
acter is first displayed in each character space and the
second line of each character is moved up to become
the bottom line of the character directly above it. This
process is repeated to scroll the data. The movement of
data in memory is controlled by the CPU in a well-
known manner.

l

S M O O T H S C R O L L I N G

Apple /// Computer Information • Apple /// Level 2 Service Reference Manual

Apple Computer Inc • 1982 Page 0556 of 0730

9
4,383,296

10
development of the Ct and C3 signals is illustrated in
FIG. 5.) The gates 124, 125 and 126 provide mapping
compensation within the memory. As the computer and
memory are presently implemented, the sequence in

dress signals for the memories (ARO through AR5). The
multiplexer 119 has four inputs on its pins 3, 4, 5, 6 and
provides a single output on pin 7, the AR6 address
signal. (The signals supplied to pins 11, 12 and 13 of
multiplexer 119 are for clamping purposes only.) S which the various portions of the display are generated

is not the same as the sequence in which the data is
removed from memory for display. These gates provide
compensating addresses and, in effect, cause a remap•

The AX signal is applied to the pin 14 of each of the
multiplexers. The signal on this line and the signal ap-
plied to pin 2, determines which of the four inputs is
coupled to each of the outputs of the multiplexers. The
AX signal is a RAM timing signal for clocking the first JO
7 bits and second 7 bits of the multiplexed 14-bit address
applied to each of the memory devices 106. The other
control signal to the multiplexers is developed through
the AND gate 123. The inputs to this gate are the dis-
play signal (DSPL Y) which indicates that the computer IS
is in a display mode and a clocking signal, specifically a
1MHz timing signal (ClM). The output of the AND
gate 123 determines whether the address signals from
the CPU or the signals associated with the counter 58 of
FIG. 1 are selected. 20

Assume for purposes of discussion that the display
has not been selected, and thus, the output of gate 123 is
low. The AX signal then selects for pin 7 of multiplexer
116 first the address signal Ao and then A6- Likewise,
each of the multiplexers selects an address signal (ex- 25
cept for those associated with exclusive OR gates 124
and 125 which shall be discussed). If the display signal
is high and an output is present from the gate 123, then,
by way of example, the AX signal first causes the Ht
signal and then the Vt signal to be connected to the 30
ARI address line. Similarly, signals corresponding to
the vertical and horizontal count are coupled to the
other address lines during display modes.

The adder 114 is an ordinary digital adder for adding
two 4-bit digital nibbles and for providing a digital sum 35
signal. A commercially available adder (Part No. 283) is
employed. The carry-in terminal (pin 7) is grounded
and no carry-outs occur since one of the inputs (pin 12)
is grounded. The adder sums the digital signal corre-
sponding to H3, II. and H, with the digital signal corre- 40
sponding to V 3, V 4, V 3, V 4. The resultant sum signal is
coupled to the multiplexers 116, 117 and 118 as illus-
trated. the summing of these horizontal and vertical
counter signals is used to provide the more dispersed
mapping as previously discussed. 45

The adder 121 is identical to adder 114 and is coupled
to sum the three least significant vertical counter bits
from the counter 58 (FIG. 2) with the signals V Al, VBl
and VCl. The sum is selected by the multiplexer 120
during the high resolution display modes and also dur• so
ing scrolling as will be described. These sum signals are
coupled to the multiplexers 117, 118 and 119. During
the low resolution display modes, the mul(~plexer 120
couples ground signals or the page 2 02) to the
multiplexers 117, 118 and 119. (The Pm signal is used SS
for special mapping purposes, not pertinent to the pres-
ent invention.) During the high resolution modes when
the display is not being scrolled, the V Al, VB2 and
VB3 signals are at ground potential and thus no sum•
ming occurs within adder 121 and the VA, VB and VC 60
signals are coupled directly to the multiplexers 117, 118
and 119.

The address signals Ato. A11, and At3 from the CPU
are coupled to the multiplexers 117, 118 and 119, re•
spectively, through exclusive OR gates 124, 125, and 65
126, respectively. The other input terminals to gates 124
and 125 receive the C3 signal, while the other input
terminal of the gate 126 receives the Ct signal. (The

ping so that the proper sequence is maintained when
data is read from the memory for the display. These
gates are shown to provide a complete disclosure of the
presently preferred embodiment, however, they are not
critical to the present invention.

In operation, the circuitry of FIG. 4, as mentioned,
selects the address signals which are applied to each of
the memory devices, either from the CPU or counter if
the display mode is selected. It should be noted that not
all of the address bits from the CPU are coupled to the
multiplexers 116 through 119. Some of these address
bits, as will be described in conjunction with FIG. 5, are
used to develop the various CAS and AAS signals and
thus select different rows within the memory of FIG. 6.

The scrolling operation which is used is somewhat
unusual in that each line of the display is separately
moved up Oine-by-line) with one line of data in memory
being moved for each frame. This technique provides a
uniform, esthetically pleasing, scroll. Scrolling the
screen one line per frame can be achieved by moving all
the data in the memory into a new position for each
frame. This would be very time consuming and imprac-
tical. With the described technique, only one-eighth of
the data in the memory is moved for each new frame.

Referring to the adder 121, as mentioned, the signals
VA, Vs V c are the three least significant vertical
counter bits from the counter 58. These bits or counts,
by way of example, represent the 8 horizontal lines of
each character. In adder 12, a 3-bit digital signal, V Al,
VBl and VCl, is added to the count from counter 58.
This 3-bit signal is constant during each frame, how-
ever, it is incremented for each new frame.

During a first frame, 000 is added to the vertical
count. During a second frame, 001 is added; and during
a third frame, 010 is added, and so on. By adding this
digital signal to the count from counter 58, the ad-
dresses to the memory are changed in the vertical sense.
During the first frame when 000 is added, the display
remains unaffected. During the next frame, when 001 is
added to the vertical count, instead of first displaying
the first line of a character, the second line of each
character is displayed at the top of each character space
and each subsequent line of the character is likewise
moved up one line. If data in memory is not moved, the
first line of the character would appear at the bottom of
each character. Note when 001 is added to 111 from the
counter, 000 results. Thus, the first line of characters
would be addressed when the beam is scanning the
eighth line of characters. To prevent this, the data cor-
responding to the first line of each character is moved in
memory for this frame. The first line of one character is
moved up and becomes the bottom line of the character
directly above it. When 010 is added, the process is
again repeated. For example, the third line of each char-
acter is first displayed in each character space and the
second line of each character is moved up to become
the bottom line of the character directly above it. This
process is repeated to scroll the data. The movement of
data in memory is controlled by the CPU in a well-
known manner.

l

:

!?÷É⇐¥¥ÉÉ÷÷
:

R O U G H S A I L I N G

→ is °

⇒- 88

AT RMT
,
them Is

É
_ Mdm is

°
'

Ef - 90

Map / shes o -Bf are oft fully
co is rash 20 ,

"DF is rash >f
Ff -

Ao

E- 7 is rash 88 , FF is
rash to

BB v07DP At - A>

µ
draw on line Hy -- EY ni>

"

O - co off MAP
Cl is raster 20 ,

EO is raster 3f /31)
TB then, NUDh.is ' s I

e- 8 is rash
88 / ;) , Ff

is rash
9f (Ao)

AT

void AO - AT

AO

20-
✓ ⇒ theirs is mop

'~

Esson is 20

÷) so ash ☐
•

quite orlea
.

-

88✓ TL = Heo Y - 23 is her nap In

d. splayed .I
TL mod 8 D Mdgl

tY=E6 TE HY - 23=63

Nudge = -1cg. 8=0

Hh 4
,
TL=4Y -23 :c ,

HYE} , Tu: 144 -23=0 Nudge = Tiber =3

map
µ

Ch

C3
a

÷ ::÷÷⇔Cy
CJ

+why_
is =

C }÷☐÷÷E""÷÷÷:: .
CT 07

[6 (8 mpg 8=60 MD /8=0

v. G
"

~"
"

C9
ago④ (673

"
an

" ①

28 ↳ Do ↳
map
IN [

:it DOA W-

C , Hy=Éc°④
CE

µ
: +14

' 9
:
" .¥7E¥÷÷⇔ """

÷. :: •CE
D , mpg 8 "①

"
°

④
MD /
8=1

DO
..

⑨
Goal is to work backwards

.

I have map line M .

what ran
in memory ahh

holds it ?

IF M IS [8
.

It is on
like 28 IF nudge is 0

,
20 if aadge is 1-7

09 .
29 0-1,21 if nudge is 2-7

CA Tf
o - 2,22

if adgr is 3- 7

Ht. 1-1-23 -

- Top displayed my line
.

co
, ci.cz. Nudge D '+288 .

rn is In- Hu) from top . YD

HY=E3,TL=C0 ⑨ HY=EY ① HY=EFTEC2 174=56 TEC 3 Hy = 20 Tv =-3 !
TL= Cl ② ③

C. 8 Cf

Cl 4

[8
cg c. 9 go

.

FINDING
"
CG

.
On the 20+9 or 20-1

'

Cz CZ CZ ① ⑥ ① ②③I "
c} 03 c } C3

CY CY cy
CY

8 08 2048 or 20+0

CT [g-
[5 ⑥ ② ①②③

16 cg cy
"

A w+A or 18-1A

(7 07 07
↳

⑥①② ③ B

N

DO DO Do ↑

28818cg es DI P '
so map art MoD 8 = M)

CA CA CS p2

CB or CB G
Tahini

moos 8 = Tg

CC CC Cc Ee
MD = me- Tc

CD CD on CD HB If 1-④ ≤ m8
,

20-1 M8☆mp
CE

of Ef -18 > my 184m83 MD

3o, D8 Do

D ,
D ' 1>9 1) 4 Map the Dl . D•m8= ① !

Dy
DA Top tin • Cl ng -18=10

D } P3 ☐ 3 pz mD=M -CI 1- ≤ m8

= 10
201-10 + =3 I

④
map IN Dl m8=①
top 1hr C2 -18=20

0000 0001 I ① 2 -18 > m8

MD = DI - C2 18 -1 F- 1-1-28 = 29
000 ° 1001 41 ① F 27

1 ' ' ' ! - I ① ④ÉmL top Hr=HeoY-23

so AND #07
= -1L

Still get~ mop diff = me - TL = MD 1-
told1- 8 map line %8=M8 bnwgtnr

top line 88=1-8 but
mod 8

IF -18 ≤ mg
,

base -_ 20 isd
vlhllotHAIK (-187mg) bum = 18
ifmghr,

line = base + MDT -18 add
= 1008158bottom field

.

base = 88 or
8°

1-14-23 - Void ?
just

_É Whyte dnbnu to think -14 ?

C] -14=6

top them hair felt it health →
-Tent

that should cart as avdgeo
manned88$'

g, headed /
.

④ ⑦
IF I SEEK LINE for AI

§
" " " A]

Ao €8 As 2,0
NUDE (+12-3)%8 AT ②

,
we

i. !
,
! a, Al As 1-9 21

Az Az -11 An. zz

← 't w'" DEM EITHER have replaced]kÉ, A} A> A> AT 23
Hal 21

. 2 ' 'f w ≥# the top 2 with
& / C2 C) AY AY AY Ay zy

29 If N=o
,
I

4,0
co

o.cz on
AT A-FAT AT 25

✓club from -188
.C ' AG A- 61-6 Ay 24 Hbo's at nudge 0 is

,, , , , ,, µ, µ , ,, ,,
, ,} µ , , µ, ,,, , _

¥#IT# 28 That nudge 0 is

CJ CG CT

c. 6 C> cr AT AT ☐ 1 BI th c.3-23=1-0 <m is the ⑧
"
"

%:÷÷:-. a. a. • ⇒ →

C) Cr ch AA AA #DI 2s Could maybe do
11-7-23 = AO

.

Ai
,
Az
= location

,
9

.

Ac AC AC AC 2C"

AD AD AD AD
80 ⑨ ① ②

AE AE AE AE ≈? AG
- AO = g (mis)

it ! Kgb
i.

"

! ! AF AF atArun RAMER 29 if nudge :O Phs)-④
,

it

Rf.Eg ④→c3 CY Cr 16 928=1

⑧ ① ② ③ IF 4-14-23)? 8 ≤ miss,g
shifts a byte

rash is 29 Up.

if
. . .

> - - - if-① >② -8
.

then it has already
moved up

rash is 29-8=21 nudge ~

Hy:C}/seek A9
,

CY CJ
TL = 7-14-23 = A/ ①

,TL: -1-19-23=1-0 ⑥
,

TL --1-17-23 -- A2 ②y

MD= A- 9- 1-0=9 ①m zyL= TL -⑦ Z7L= -1L -⑦ = -12-2=1-0
A , _ ,

= AO Z7L= Floor
>

TLdvv-isvdyf.ro-8*11-0> MD = A- 9-2-7<=9 ①m MD -

_ 1- f- ZTL _- 9 ①m
0

,

a 9 ' ban =3 (9-11)%820-8+1-10 >⑦④ - 8*(TO >⑨)④ rash - = ④ w
' l

ball 1- MD z 1

rash __ bnusetmb
rash -_ bus

&c-MD

tf get -27L
.

TL = HY - 23 = A2 10100010 ④
2-7L = TL KID 1--8 TL = 1-14-14 CG

! = TL AND 07does it work in 700-10=174 1)28
town field ? not

MD =

Map - ZTLÑtʰ ② = my tip o > 77L = -1L -⑦
CTE 90 = C>

c8 If 41 base = - 8*(⑦ >②)
car cq . 92 MD -

_Map- -27C
d- at a- 9,3 rash = Basit ban + MD

CB is a ay = DO - C >
cc 55 -

CD
CC CC
CD cos 94 = 3

97÷a . : ① =3
zu

_ c) ! = %)%ᵗ

gun , _ 8*(-107^0)
! - ②

zyu= -1L
-TODO To 99

DI DI DT 9A

⑨ § z ,•
no - C >

rash = 90 -1 ban① 79 ①ban - 8 bask
= - • (-0%0) + →

in
rash ?@0*8+9 = 93

= 91

S M O O T H S C R O L L I N G V S H I R E S  
V S M A M E

• Smooth scrolling only functions for "HIRES" display modes.

• Surprisingly, not for text 
modes. So it cannot be 
used to make a smoothly 
scrolling terminal.

• MAME will do it for 
text modes too, but 
scrolls things SIDEWAYS 
in text mode. Real 
hardware does not do 
this. Also means I need 
to turn off smooth scroll 
in non-hires regions.

Apple /// C
om

puter Inform
ation • Apple /// Level 2 Service R

eference M
anual

Apple C
om

puter Inc • 1982
Page 0123 of 0730

Ol
ti) ..

H6 H6 H6 ,6

VIDEO
(C\1>~) (1·H+) (t:t~}~) (1?>~4-)

MODES
:::. /,; p 7 ~5 pw.4 pm 6

e '~
APri,..e llI .. "''""' ROM 6-5 ROM&5 ROM &S" ~OMC;r,

'-~,-1
pi-. 2 r"41 ~2.? rw,4 '::,, ..

~Cl..t ..

¢ I aJ I 0 I " I
(tSs,,1c.,,1 ,_s ifc-u c•~•/c,,,;, ('C,S'll/c•S'.S'

PAGE i HIRE~ MIV 61l./TEXl G-Pl-f2
.(HAR A'll. (0/w) (/) (/) (/) ¢

4-<1> (JjAR~I\RA (Color) (/) 0 I (/J

l 0 8¢ 0-IAR { B/W) --- (/) (/J

80 CHAR (0/w) (/) I I 0
AI[HIRES (2tox1'l2., P./w) ' (/) 0
FGD/BKu-D ttl ~ES(2 f:~.~~h I (J I 0
SUPER HIRES(fl.01n11.., B/vJ) I I (/) 0
14-0 >< 1£\2 A HIRES (1401~2-,<olllf) I I I

~AfrE 1-
40 CHAR A 1t. (~/u>) <6 ¢ 0 I -l\-'1 Cl-~AR SARA (co\ot') 0 (/) I I

t--·. -- - - ---
00 CHAR (P.>/w) 0 I (/J I

1-

80 CHAR (P,/w)_ . ___ () I I I
A I[ttlRE$ (250 Xll\t, P,/W)' I I I ¢ I 0 I I
Fu-D/ BK&D HIRES(LIIO",~t .. ,.n,.) I I I 0 I I I I
SUF£R HIRES (56o kl0\2., ~lu)) I I I I ~H
I~ ~\<:\'2-_Att\RES(''fO•~~\ot) l I I~, I

.__ t::· lod:i~ 1'1-

7J7.r w = 1"'7 C ttC:n,- - t:'I "7 U~

r; ,,.
0

l.ri

I"' Ill \.!5
Q_

i t

as
,-.., 'l

\)

" (/)

el
0
</)
(/)
0
a,
¢
¢
¢
t/>
<J

,,.,,..,ri,
d~''1
J~'""

l_J
r--
{'(\ t:L
_J .9 w ()
(./) V

~5 u-5
rMI lgj fW>' 11

I 0
I I
I (/)

I </)
(.~.,, (/>
c,wJ:-1•'1 I
c.tP•'1 0
(..~,., I

dtJO,,, (/)
~fot):•"I I
k.)otk1"1 (/)
t.10(.k1tt1 (/)

I rt>
I I
I <.6
I I

(jl
w

:c
<
Grs
p.., l?>

(/J

</)
</)

<I>
a,
<1>
r/)

I

<1>
0
0

Qj
0
<I> --
I

e
00
:i: u

GS
pw1'1

I
I
0
0
I
I
</>
(/)

I
I

(/)

0
I
I
<I>
r/>

rt
rf\

lo
4-5
pwt, 15

I
(/)
I
I
I
0
I
I

I
d>
I
I •
I
<I>
I
I

cf. w
g
<{

0r5
pw-16

(/)
(J
<l>
</>
05
0
(/J
I

0
(/)
¢
</J
(/)
0
I

(./)
UJ
CJ{_

.::c
0

Cr5
,.., 17

¢

-,.
.!J •

0 __ •
cfoll'-':i

dod-:.H"I
1,lo{~-',,
1clod1_.I

¢
(J
QS
</)

rlo<-b.,

.clou1'1
l,1,iJ,.1W'I

Jo<}lr11

'1-

4 .,
" 1

g

'1
'3

+
s
b ,
9

C U S T O M

F O N T

i¥→¥¥É÷i:¥¥¥☐i¥:B C D E F 11 13 15 17 If

Ét÷¥ÉiiÑÉ÷.
i_i¥÷÷÷

•
-

. 25 26 27

C H A N G I N G T H E F O N T

• Lots of articles and manuals talk about changing the
font. But not really how.

• Apple provides a way using a driver that lets you point
at the font data. That's pretty much the only way
anyone talks about. I am not using drivers.

• The font data does not live in addressable RAM. You
cannot change it on the fly. You have to stage it into
some hidden RAM space by putting in special memory
areas and telling the Apple /// to start loading the data.

C H A N G I N G T H E F O N T

• Though I do not know all the details, the transfer clearly
happens by leveraging the scan through video memory.

• The procedure is to place 8 characters' worth of data
into the text page screen holes, turn on the "scan font
data" switch, and wait for at least one full VBL cycle
(when the video data has all been transferred at least
once). Then, move on to the next set of 8 characters.

• You have 128 characters (the other 128 are inverse).

S C R E E N H O L E S

• Each triplet of lines on the text page has a "screen hole." That is
because each line is 40 characters wide, but each 128 byte boundary
is lined up to the left edge. So:

• first line: 0 to 39

• second line (down the screen a ways): 40-79

• third line (down the screen further): 80-119

• not displayed (screen holes): 120-127

• More concretely, screen holes are:

• $478-47F, $578-57F, $678-67F, $778-77F

• $4F8-4FF, $5F8-5FF, $6F8-6FF, $7F8-7FF

• Data in here will not affect the screen as it is being drawn.

F O N T D ATA

• We have 64 bytes of screen hole space (8 chunks of 8 bytes). That is
enough to hold font data for 8 characters (font data is 7x8, high bit is
unused).

• You'd think that each screen hole would contain one character.

• Or maybe that they'd be organized down the screen, with the 8th
character in the 8th byte, 7th in the 7th, etc., with the first raster line in
the first screen hole.

• But it is neither of these things. Nor did I find it written down
anywhere. The monitor ROM sets up the characters at startup, but the
data is compressed in a way that makes it opaque. I determined the
actual layout basically through trial and error.

F O N T D ATA L AY O U T

• In fact, each screen hole contains two bytes of four different characters.
First 4 screen holes contain the first four characters, last 4 screen holes
contain the last four characters. Because Apple can always find a way to
interleave things just one more level.

• The screen holes in page 1 ($400) contain the character data. The screen
holes in page 2 ($800) contain (very redundant) index data indicating
which character this is. So if you are updating character $01, you have to
put 8 $01 values in the page 2 addresses corresponding to the 8
addresses holding the pixel data.

• It is likely that this system is "dumb" and you could scatter different
characters' data around somewhat differently (like: have the last bytes
of the first screen hole contain the first line of character $02 and the
second line of character $03, though it is hard to see why you would).

C U S T O M  
F O N T D ATA

• Put data in screen holes.

• Touch $C0DB to turn on font
transfer

• Wait for a full VBL cycle (two
interrupts)

• Touch $C0DA to turn off font
transfer

• Anything you don't change
doesn't change (stays as
monitor ROM or SOS set it
up), doesn't hurt anything to
change something to the same
thing it was.

PI LS CHAR

478 1AÉc1AÑc ÉÉ
41--8 1A%ci1AÑcD 81=8

r>8 1AÉÉ1A%É 9>8

sr-gln.FI#-1A%cDJ9r-s
Row 0 Row I

678EiEi A > 8
Row 2

Row 3

61=8 EFEFAf8
Row 4

Row 5

778EiEF 137g

Row 6 Row 7

75-8 EiEiBF8

6 - B I T A U D I O D A C
• Often mentioned, but with very little information on how it works.

• PB of the FFEx VIA is accessed by $FFE0. What this is telling us is that the
lower 6 bits of what you write to $FFE0 go to the DAC.

• Incidentally, the PB6/IO Count Line turns out to be the HBL. Not written
down ANYWHERE I don't think. I only know this HBL trick from Rob
Justice's observations of what Atomic Defense was doing.

Apple /// Computer Information • Apple /// Level 2 Service Reference Manual

Apple Computer Inc • 1982 Page 0068 of 0730

,--------------------~
:. CXN'l'1Pulm' a,c.

The processor can, at certain times, read this port for the status of the
special Apple switch on the keyboard with~u~ distur~ing the keyboard circuit.

The IRQ* signal is wrapped around to the PA7 line for special diagnostic pur-
poses.

CLK IRQ*

The Real Time Clock's interrupt is connected to the CAl line, which is
programmed to be a negative edge active input. When the clock generates an
interrupt, it will set the IRA flag in the IFR. The PA port is conditioned
for non-latching, however, resulting in a basically independent interrupt for
the clock.

Keyboard Interrupt

The keyboard's interrupt is connected to the CA2 input, which is programmed t.o
be an independent negative edge interrupt. It will set Bit O in the IFR and
cause the IRQ* line to go low.

Note: The keyboard can, for the most part, be disabled by disabling the
interrupt flag for the CA2 line.

VBL (Vertical Blanking)

This input can perfon two functions, depending on how the CBl, CB2, and Shift
Register are programmed.

o The system may want to be interrupted at each vertical blanking
cycle. If so, you would program the CB2 line to be an independent
interrupt OR let it strobe the IPB and set the corresponding bit
flag.

o The system may want to synchronize an operation to the display, but
may not want to be interrupted at each VBL. If this is the case,
the system can configure the Shift Register to count 8 occurrences
of the VBL signal. An interrupt will then occur after each set of
8 Vertical Blanking cycles (about once every second), in sync with
the display scan.

PB Port Description

The first 6 lines of the B port are configured to be outputs. They are inputs
to the sound Generator.

o The tone generated at the speaker can be varied by changing the bit
values of these lines.

o There are 127 possible tone combinations; the missing one turns the
tone off completely.

3.16

I

....

Apple /// Computer Information • Apple /// Level 2 Service Reference Manual

Apple Computer Inc • 1982 Page 0069 of 0730

r

- comp,Jlxll'n:.

PB6 1• connected to the I/0 Count line. Depending on the device in the slots,
the VIA may be progra11Md to count a certain nuaber of pulses generated or to
determine that only one pulse occurred. Either way, the VIA will generate an
IRQ and set the appropriate bit flag.

The bit 1• uaed to aonitor the NKI (Non Haakable Interrupt) line
generated by the in the t/0

3.17

I

W H AT I S A N A U D I O D A C A N Y W AY ?

• I had no idea how this was supposed to work. What do those 6
bits encode?

• My current guess: It seems to encode essentially an amplitude,
and it's fairly straightforward. You produce a sine wave by
raising its value up and then down in a sinusoidal pattern. Do
that repeatedly and the frequency dictates the pitch.

• The document says there are 127 different possible tone
combinations, but I can only count to 64 with 6 bits. This is a
typo right? Or maybe I still don't quite understand what those
6 bits do.

R U N N I N G A U D I O

• It appears that the basics of running audio is pretty simple. You just
put the amplitude into the audio register. But if you want to have a
reasonable pitch range and smooth sounding audio, you need to do
that OFTEN and REGULARLY.

• An interrupt sounds perfect for this, except that it takes so long to get
in and out of an interrupt handler there's no time left for anything else.

ON THREE
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill

I I I to the Max # 4
••• And Things That Go GLEEP
In The Nig_h_t ____________________

This month's column concerns making sounds on the Apple
Ill. I have spent an embarrassing number of hours investigating
the subject and have grudgingly reached the conclusion that
the simplest way is the best Theoretically, the Apple Ill has fairly
powerful sound-generation capabilities. But for reasons which
will be explained below. it is impractical to make full use of these
capabilities Instead. we have to rely on a very basic technique

Stated simply, you make a sound on a computer by I) issu-
ing some instruction which causes a loudspeaker to move. 2)
waiting some amount of time. and 3) repeating these two steps
for however long the sound is to be made. If the amount of
time you wait in step 2) is the same for each repetition. the
sound is a more-or-less pure tone with a pitch which is an in-
verse function of this time-longer t1me equals lower pitch.
shorter time equals higher pitch If the amount of time between
cycles varies randomly, the sound is a noise. If the time IS chang-
ed regularly between cycles. the pitch of the tone or noise
sweeps up or down.

There are three ways of access1ng the loudspeaker built into
the Apple Ill. Th e first is a hardware beep generator generally
used to signal the user that something is amiss-l'm sure you've
all heard it It exists because it is sometimes necessary to make
a noise without any delay in processing For example, if the
computer receives an ASCII BEL character (CONTROL G) over
a phone line at high speed and stops processing long enough
to beep obediently, it may well miss the next character or two.
With the hardware beep generator. the character causing the
beep takes no longer to process than any other. This is a very
useful noisema ker. but with an extremely limited repertoire-
one pitch, one duration. The normal way of accessing it (from
Pa scal) is to write a CHR (7) to the console. For assembly-
language programmers. the pushbutton for this tone is at
location SC040 with the 110 space enabled.

The second way of gaining access to the loudspeaker is the
one used in the .AUDIO driver provided by Apple. This device
driver makes lovely pure square-wave tones over 7 I 12 octaves
at 63 different volumes. Unfortunately, that's al! it does. It's nice
for playing little tunes. but doesn't provide for any sound ef-
fects. and has no on/off switch. Since I was wnting a game
and needed these facilities. I decided to explore more deeply

Deep within the bowels of the computer are two devices
called 6522 Versatile Interface Adapters (or VIA's for
short). The VIA is a marvelous chip combining many useful
functions These two devices are responsible for much of the
power of your Apple Ill. One of them. the EVIA is used among
other things. to operate the loudspeaker. Six bits of one of its
output registers are connected to a simple digital-to-analog (DIA)
converter which controls the vo ltage on the speaker. In the
.AUDIO driver (see the Standard Device Drivers
Manual. pp I 29- I 34), the voltage on the speaker is set ac-
cording to the VOLUME parameter. One of the two timers in
the VIA is set to the COUNT parameter. while the other is set
to a constant representing the duration of one unit of the TIME

parameter. Each time the f1rst t1mer runs down. the voltage on
the speaker is reversed. Each time the second runs down. the
TIME remaining is decremented.

And that is the SIMPLE explanation All of this is done on
the device driver level. and involves myst1c acts such as
allocating and deallocating undocumented System Internal
Resources; setting and clearing the interrupt-inhibit flag clever-
ly but illegally to keep the system happy; and strange routines
to read six characters either one at a time or all at once.

I analyzed it thoroughly because with this setup. it 1s possi-
ble to make sounds on an interrupt-driven basis; i e , to
have the computer go on about its business until the time has
come to change the voltage on the speaker. then change the
voltage. then go back to whatever it was do1ng before. Ob-
viously. this is useful in a game-the action and sound can be
completely independent of each other. Furthermore. only I or
2% of the time in a sound making routine is spent making
sounds-the rest is spent JUSt waiting until it's t1me to do
something This means that an interrupt-driven sound routine
would be almost free from the standpoint of processor time.
Encouraged. I wrote an interrupt-driven .AUDIO device driver.
After five versions. I had to admit defeat It worked. but.

Unfortunately. according to the SOS Device Driver
Writer's Guide. the minimum response t1me to call an Inter-
rupt handler is about I 60 microseconds. and another I I 5
microseconds is required to return from the interrupt handler
to whatever was happening before the interrupt occurred. So
even though my interrupt handler takes only I 5 microseconds
to execute. the total time required to update the speaker is 290
microseconds. Since the voltage on the speaker has to be
changed twice per audio cyc le, a sound with a frequency of
about I 700 Hz consumes ALL of the computer's processing
time-not exactly an improvement

And that brings us to sound-producing technique three, one
with w hich Apple][programmers will be familiar . Th e speaker
itself is mapped into the computer's memory at location SC030.
Any reference to this address (with 1/0 enabled by the environ-
ment register) will result in a tiny click from the speaker. A great
variety of sounds can be made by controll ing the frequency
of the clicks in interesting ways. For the reasons above. this
is the technique I use and recommend.

I have Apple][sound routines gathered from many sources
over the years I have adapted four of my favorites for the Ap-
ple Ill Pascal environment; they are included with this column.

The Routines
The first of the four assembly-language routines in .PROC

NOISE (Program Listing -1) produces a white noise
modified by a lowpass filter which can be swept over a
range of frequencies The white-noise generating technique
was originally published in the April, I 980 Byte by J.
O'Fiaherty he filter and sweep were added by Ray McVay
in a version published in the September. 1980 Caii-A.P.P.L.E.

Volume 2 - Number 2 17

ON THREE
Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill Ill

I I I to the Max # 4
••• And Things That Go GLEEP
In The Nig_h_t ____________________

This month's column concerns making sounds on the Apple
Ill. I have spent an embarrassing number of hours investigating
the subject and have grudgingly reached the conclusion that
the simplest way is the best Theoretically, the Apple Ill has fairly
powerful sound-generation capabilities. But for reasons which
will be explained below. it is impractical to make full use of these
capabilities Instead. we have to rely on a very basic technique

Stated simply, you make a sound on a computer by I) issu-
ing some instruction which causes a loudspeaker to move. 2)
waiting some amount of time. and 3) repeating these two steps
for however long the sound is to be made. If the amount of
time you wait in step 2) is the same for each repetition. the
sound is a more-or-less pure tone with a pitch which is an in-
verse function of this time-longer t1me equals lower pitch.
shorter time equals higher pitch If the amount of time between
cycles varies randomly, the sound is a noise. If the time IS chang-
ed regularly between cycles. the pitch of the tone or noise
sweeps up or down.

There are three ways of access1ng the loudspeaker built into
the Apple Ill. Th e first is a hardware beep generator generally
used to signal the user that something is amiss-l'm sure you've
all heard it It exists because it is sometimes necessary to make
a noise without any delay in processing For example, if the
computer receives an ASCII BEL character (CONTROL G) over
a phone line at high speed and stops processing long enough
to beep obediently, it may well miss the next character or two.
With the hardware beep generator. the character causing the
beep takes no longer to process than any other. This is a very
useful noisema ker. but with an extremely limited repertoire-
one pitch, one duration. The normal way of accessing it (from
Pa scal) is to write a CHR (7) to the console. For assembly-
language programmers. the pushbutton for this tone is at
location SC040 with the 110 space enabled.

The second way of gaining access to the loudspeaker is the
one used in the .AUDIO driver provided by Apple. This device
driver makes lovely pure square-wave tones over 7 I 12 octaves
at 63 different volumes. Unfortunately, that's al! it does. It's nice
for playing little tunes. but doesn't provide for any sound ef-
fects. and has no on/off switch. Since I was wnting a game
and needed these facilities. I decided to explore more deeply

Deep within the bowels of the computer are two devices
called 6522 Versatile Interface Adapters (or VIA's for
short). The VIA is a marvelous chip combining many useful
functions These two devices are responsible for much of the
power of your Apple Ill. One of them. the EVIA is used among
other things. to operate the loudspeaker. Six bits of one of its
output registers are connected to a simple digital-to-analog (DIA)
converter which controls the vo ltage on the speaker. In the
.AUDIO driver (see the Standard Device Drivers
Manual. pp I 29- I 34), the voltage on the speaker is set ac-
cording to the VOLUME parameter. One of the two timers in
the VIA is set to the COUNT parameter. while the other is set
to a constant representing the duration of one unit of the TIME

parameter. Each time the f1rst t1mer runs down. the voltage on
the speaker is reversed. Each time the second runs down. the
TIME remaining is decremented.

And that is the SIMPLE explanation All of this is done on
the device driver level. and involves myst1c acts such as
allocating and deallocating undocumented System Internal
Resources; setting and clearing the interrupt-inhibit flag clever-
ly but illegally to keep the system happy; and strange routines
to read six characters either one at a time or all at once.

I analyzed it thoroughly because with this setup. it 1s possi-
ble to make sounds on an interrupt-driven basis; i e , to
have the computer go on about its business until the time has
come to change the voltage on the speaker. then change the
voltage. then go back to whatever it was do1ng before. Ob-
viously. this is useful in a game-the action and sound can be
completely independent of each other. Furthermore. only I or
2% of the time in a sound making routine is spent making
sounds-the rest is spent JUSt waiting until it's t1me to do
something This means that an interrupt-driven sound routine
would be almost free from the standpoint of processor time.
Encouraged. I wrote an interrupt-driven .AUDIO device driver.
After five versions. I had to admit defeat It worked. but.

Unfortunately. according to the SOS Device Driver
Writer's Guide. the minimum response t1me to call an Inter-
rupt handler is about I 60 microseconds. and another I I 5
microseconds is required to return from the interrupt handler
to whatever was happening before the interrupt occurred. So
even though my interrupt handler takes only I 5 microseconds
to execute. the total time required to update the speaker is 290
microseconds. Since the voltage on the speaker has to be
changed twice per audio cyc le, a sound with a frequency of
about I 700 Hz consumes ALL of the computer's processing
time-not exactly an improvement

And that brings us to sound-producing technique three, one
with w hich Apple][programmers will be familiar . Th e speaker
itself is mapped into the computer's memory at location SC030.
Any reference to this address (with 1/0 enabled by the environ-
ment register) will result in a tiny click from the speaker. A great
variety of sounds can be made by controll ing the frequency
of the clicks in interesting ways. For the reasons above. this
is the technique I use and recommend.

I have Apple][sound routines gathered from many sources
over the years I have adapted four of my favorites for the Ap-
ple Ill Pascal environment; they are included with this column.

The Routines
The first of the four assembly-language routines in .PROC

NOISE (Program Listing -1) produces a white noise
modified by a lowpass filter which can be swept over a
range of frequencies The white-noise generating technique
was originally published in the April, I 980 Byte by J.
O'Fiaherty he filter and sweep were added by Ray McVay
in a version published in the September. 1980 Caii-A.P.P.L.E.

Volume 2 - Number 2 17

P I G G Y B A C K I N G A U D I O

• I do have a regularly-firing interrupt, though. It goes off with
certain HBLs in order to do the display mode switches. Since
I'm in there anyway, may as well update the audio then.

• Originally, I had the interrupts fire only when I needed to
switch, but changed it so that it will fire every 8 scan lines,
whether a switch is needed or not. That makes it regular.

• Except during VBL, which covers the same time as 70 scan
lines (or 8-9 audio samples). So, during VBL I set up a
counting timer that goes off at approximately the same rate,
and do just the audio. Costly, but workable.

G A M E P L AY

• After all the technical stuff, also needed to address gameplay. How
to move? How to make the hoarders move? How to keep track of
score?

• Keyboard control is pretty simple, keyboard generates an interrupt,
which stores the pressed key somewhere the main code can read it.

• The basic game is mostly event driven, sitting in a loop that just
waits to see if it is supposed to quit, redrawing the playfield and
the score.

• The VBL generates the game clock that triggers characters to
move.

D E V E L O P M E N T

• When I started this, I also didn't know anything about ca65, but I used
that as my cross-assembler. Just from the command line, I wasn't about
to also learn how to use Xcode. I may not be using it particularly
correctly. There are probably fancier things I can do with the memory
and segment configuration.

• The program is all in one binary file. Stored to the disk as SOS.INTERP
which gets it to boot. Although A000-B7FF should be safe (though not
endorsed by Apple), the program got big enough I had to move it
down. Meaning that I had to put all the execute-once setup stuff early,
so it was ok for a bank to switch overtop of it.

• All it takes to make a bootable program is to compile the binary file to
SOS.INTERP (which includes a header) and store it on a disk (i.e. with
AppleCommander).

P R O G R A M M I N G N O T E S

• Using a standard lookup table for hires Y-coordinates, I generally set the
ZP to the page in graphics memory, and then wrote to graphics with ZP
opcodes, leaving the stack at $100 so that it wouldn't also be onscreen.

• Using the stack to push to graphics memory can save some cycles over
using ZP, but then you are limited to using just $78-7F and $F8-FF in ZP
(landing in screen holes), since if the stack is in graphics memory, ZP will
also be.

• It would be convenient if extended addressing worked, so you could
read from bank 2 and push into graphics memory—but it doesn't.
Extended addressing requires ZP and stack to be between 18-1F, not on
the graphics pages.

P R O G R A M M I N G N O T E S

• The colors MAME produces don't really match the ones I see
on the Color Monitor 100. The colors look better on the real
Apple ///.

• Also, MAME runs faster, discernibly. The audio sounds better
in MAME.

• Which is really because MAME is operating "too well." It's
going too fast, the real Apple /// slows down to 1MHz 73% of
the time, whereas MAME just plows ahead at 2MHz. Meaning
that fixing MAME is kind of adding code to make it worse.
Which I guess is kind of fitting for Apple /// emulation.

C U R R E N T S TAT U S

• This is the sort of thing that always could be more finished.

• Not bug-free yet at time of recording. Traveling downward can
sometimes lead to a crash/hang, and occasionally the audio sound
effects overpower the mode switching and the screen briefly displays
garbage.

• Not really a way to win or lose yet. The hoarders are supposed to head
for the disk that's closest to them, but it's not clear that they do. That
needs to work for the ability to drop a distractor disk to work. The map
might be too large to be fun, maybe should start significantly smaller.

• Would be nice to think of something to do with the lower medres
region apart from showing a grassy pattern.

F I N D I N G I T

• The code will be available on github to look at (under account
paulhagstrom).

• Will try to see if the MAME-in-a-browser on the Internet
Archive will allow this to be played without installing anything.

• Part of the point of doing this was to provide an example of
how the various Apple /// technologies could be used. To
help future others or future me, by having at least something
that shows how these things are done. So not everyone needs
to keep banging their heads against the level 2 service
reference manual.

