Playing video from a
CFFA3000

Kris Kennaway
KansasFest 2021

Overview
e Full-screen, double hi-res video, with audio, on a 1TMHz Apple //e
e using a CFFA3000 compact flash adapter

Builds on previous projects

e \Video streaming via ethernet (][-vision, KFest 2019)
e Improvements in DHGR image conversion (][-pix, KFest 2021)

Describe how | did it

e warning: lots of technical detail!
e sample videos - see #video-cffa3000 on Discord, or links at end

Past work

Lots of other related work by others

e playing videos in lo-res
e particular black & white videos in hi-res from CFFA3k (“Bad Apple”)
o ..or5.25" floppy (!)

This approach allows:

e much higher video bandwidth
o full-colour, double hi-res video

e speaker audio playback (5.4-bit PWM @ 20KHz)
e fully general video pipeline for transcoding from modern machine to play on
Apple Il using CFFA3k (or Uthernet II)

How does the CFFA3000 really work?

e implements standard device driver APls (e.g. SmartPort) for block-level 1/0O
o and emulates a Disk |l

e ...otherwise undocumented

e guess: slot firmware must be using a lower level mechanism to talk to the
hardware

e are there opportunities to make use of this for increased I/O performance?

Reverse engineering the CFFA3K slot firmware

e dumped $Cn0O0 slot firmware, and $C800..$CFFF extended firmware
e reverse engineered code starting from standard SmartPort I/O entry points

e traced the main I/O command loop
o No use of $C0xx I/O soft switches
o All'l/O is via memory addresses in the extended firmware address space ($CFxx)
o “ROM” $Cnxx memory is actually RAM-backed!
o Can modify the “firmware” (as seen by Apple Il) dynamically at runtime
m firmware itself makes heavy use of this

Core |/O processing loop

e synchronization protocol for coordinating/communicating with onboard HW
o shared memory semaphore; Apple Il and onboard HW share memory
e dispatch loop:
o issue SmartPort I/O command to hardware
o HW drives 6502 through sequence of operations to complete processing of command
m some of them involve HW dynamically modifying the firmware address space to map in
code, then telling 6502 to jump to it
m hard to get a complete firmware dump, but core logic is always mapped
e modified this dispatch loop to record a trace of operations
o not timing critical, insert a JMP to my own code elsewhere in memory

Block I/O reads

e read operations
o copy from $c800.$c9ff into caller’s requested buffer
o clean up and return
e this means that $¢800.5c9ff in firmware space is used as an I/O buffer!
e when 6502 issues a block read request, after some time the contents
magically appear at $¢800.$c9ff
e copied from there to caller’s I/O buffer

e copying to main memory is slow
o fastest possible fully unrolled loop is 4096 cycles
m LDA $c800
STA $2000
LDA $c801
STA $2001
...; 512 times

How can | make use of this internal buffer?

e could write 6502 code to access the I/O buffer and take some action
o e.g. write a pixel to screen memory

e but anything we can do would be slower than just copying the entire buffer
into screen memory

e 6502 can only read a byte from memory once per 4 cycles

e 122800 cycles for unrolled LDA/STA loop to store double hi-res frame as fast

as possible
o 8.3 frames/second
o ..assuming l/O is infinitely fast

o 92KB of code just for unrolled screen copies

Is this the best we can do?

e Can’t read from the buffer faster than this under 6502 program control
e ...but 6502 itself can access the buffer faster -- by executing it

e load 512 bytes of code into the buffer, execute it to ... do stuff
LDA #$FF ; we know what value to store, don’t have to load from memory
STA $2000

STA $2001 ; can store a value in multiple locations

STA $3f02 ; ...which don’t have to be contiguous in memory

O O O O

o 2+4+.4.1.+4=14 cycles to store 3 bytes, instead of 24
o ~2x faster

e but: 2+3+3+3=11 bytes to represent 3 bytes of screen contents, instead of 3
o ~3x less space efficient

e 512 bytes of such 6502 code executes in ~650 cycles
e s this better?

CFFA read sequence

next block

__

¢ busy wait execute buffer

6502 B — o e e e - B
firmware 650+ cycles
ready :
read block ack ©ack
exec :
cmd 5
300+ cycles 600+ cycles
CFFA3k E e N
hardware
unmap $¢800.coff I/0 prefetch next block
buffer

map block from cache,
or load from disk

Is this better? Yes!

e Note that the minimum 1/O prefetch time (~600 cycles) is almost exactly how
long it would take to execute code in the buffer (~650 cycles)!
e So by the time we finish executing, the CFFA will have (usually) finished

prefetching the next block

o we only need to wait 300 cycles for it to be mapped
o we can’t do much about this, at least with current firmware

e we can execute up to 2TB of 6502 code, paged in 512 byte chunks, at % of

native CPU speed
o ~650 cycles every 950

e Reads data at about 533 KB/sec
o cf 78KB/sec using SmartPort API; 6.8x faster

Playing video

e Up to 128 screen updates/page ~ 145000/sec
e ~ 9.4 full double hi-res screen updates/sec
o cf <8/sec for the “full frame update” approach
e i.e. a bit better in the worst case
e much better in typical case

o most videos don’t change every pixel every frame
o we can change as many or as few pixels as we like

e we can do other things as well

o ..like toggle the speaker?
o requires exact cycle counting

Strategy

e unroll the video into straight-line 6502 code that updates screen memory and
flips display switches

e ...while toggling the speaker at exact cycle timings to produce audio

e package into 512-byte chunks, stitched together with /O code

e 533KB/sec of data — 31MB of code per minute of playback

o ...but since we're using a CF with GB’s of storage, this is not a problem

Strategy

e unroll the video into straight-line 6502 code that updates screen memory and
flips display switches

e ...while toggling the speaker at exact cycle timings to produce audio

e package into 512-byte chunks, stitched together with /O code

e 533KB/sec of data — 31MB of code per minute of playback

o ...but since we're using a CF with GB’s of storage, this is not a problem

...We just need to write the world’s largest 6502 program.

That sounds hard, let’'s write a program to do it

e Actually | already wrote (most of) this program in 2019

e |[-Vision: Uthernet Il video player

multiplexes video and audio stream into a native Apple Il format

handles PWM audio encoding

understands Apple Il graphics memory structure

encodes image frames as (D)HGR images

delta encoding and prioritization of changes between image frames
m sends the bytes that will make largest visual difference to image first
m in case we run out of time to send them all

e Needed to swap output representation to use generated 6502 code
o instead of a bytecode representation of the video stream

e Also swapped out DHGR image encoding to use][-pix

o O O O O

Tricky parts (1)

e PWM audio requires toggling speaker at precise cycle intervals
e need to interleave STA $C030 with instruction stream that performs video

updates/housekeeping
o while maintaining exact cycle timings

e wrote code to do this opcode stream interleaving

STA $C@36 ; cycle @ STA $C030 ; cycle @ 8 s
o ol o STA $2096
NoP STA $2096 STA $2807
5 ... wait N-4 cycles NOP

STA $C030 ; cycle N \ STA $C030 ; cycle N ‘/ %DA #$2A
3 ees STA $2807 ’

LDA #$2A
Audio opcode stream 5 9909 Video opcode stream

Merged opcode stream

Bonus - audio quality

e normally for PWM audio playback from memory you can’t fetch samples
quickly enough to play back at 22Khz

o Fetch an 11KHz sample and play it twice
e Here we don’t have to fetch samples because we unroll the code at
generation time
e Can play audio at true 20KHz

o ..mostly

Tricky parts (2)

We need to keep playing audio during the 300+ cycles of I/O dead time
o while driving the CFFA hardware and waiting for it to map the next block
o ...and our code buffer is unmapped during this time!

While we’re executing our 512 byte block, queue up audio samples that we
can fetch and play during the CFFA I/O (idea: Lucas Scharenbroich)

o push audio sample values onto stack
o carve up CFFA /O code into ~100-cycle segments
o generate N variants of these code segments
m each toggles the speaker at (N, 50-N) cycle intervals
m while driving CFFA /O, fetching the next sample and chaining to next I1/0O segment
o reuse the same code interleaving technique to generate these variants
o these samples are played back twice at 20KHz like usual for in-memory playback

Has more overhead: ~450 cycles instead of 300
...but we get audio with our video!

Lessons learned

look at the physical hardware, don'’t just dive into software

e reverse engineered low-level I/O protocol from first principles
o alotof it was in the datasheets :-/

e Modern Apple Il peripherals tend to make use of off-the-shelf components that

perform a lot of the heavy lifting
o cf fully custom logic
o these are usually well documented, and often exposed directly to Apple Il access
e Timing measurement trick:
o to measure speed of timing loops, insert a STA $C030

o then measure audio frequency with smartphone app
o also lets you hear if you have cycle non-exactness

CFFA bugs

e SmartPort reads > 32MB aren’t handled correctly

o ProDOS only supports 32MB volumes
o but SmartPort should support 2424 blocks = 8GB
o workaround (Dave Lyons): use Extended SmartPort commands - not supported by //e

firmware, but supported internally and used by //gs firmware
e Writes to certain $CFxx memory locations causing nearby reads to become

corrupted
o won't affect normal operation of the card
o timing/electrical issue in the HW?
o problem with my particular board?

What's next?

finish cleaning up code and merge back to][-Vision

Support running on //gs -- different firmware, should just need minor changes
See what can be done with other mass storage devices

Optimizations and algorithmic improvements to video encoding

Other applications for paged code technique?

Links:

e (in future) code: https://github.com/Kriskennaway/ii-vision

e download video files
o hitps://www.dropbox.com/sh/nzh7iv6h97g3zbc/AADMDIXMINStdvexM1RplJ1ha?dI=0

https://github.com/KrisKennaway/ii-vision
https://www.dropbox.com/sh/nzh7iv6h97g3zbc/AADMDfXMIN5tdvexM1RpIJ1ha?dl=0

Bonus: Booti

uses a CH376 USB controller on a daughterboard
[+] hardware supports reading 65KB at a time, not just 512b
[+] data is streamed via $COxx I/O port (like Uthernet II)

[-] I/O is fully synchronous; no hardware prefetch

o would make audio difficult, although maybe the queueing technique could help
e [?] haven’'t measured read throughput yet
o but for CFFA3k, USB access is much slower than CF

Bonus: underlying HW seems to expose much more general capabilities

e full R/W access to the USB filesystem, not just disk image file
e more general USB device I/0O?

