
Playing video from a
CFFA3000

Kris Kennaway
KansasFest 2021

Overview

● Full-screen, double hi-res video, with audio, on a 1MHz Apple //e
● using a CFFA3000 compact flash adapter

Builds on previous projects

● Video streaming via ethernet (][-vision, KFest 2019)
● Improvements in DHGR image conversion (][-pix, KFest 2021)

Describe how I did it

● warning: lots of technical detail!
● sample videos - see #video-cffa3000 on Discord, or links at end

Past work

Lots of other related work by others

● playing videos in lo-res
● particular black & white videos in hi-res from CFFA3k (“Bad Apple”)
● ...or 5.25” floppy (!)

This approach allows:

● much higher video bandwidth
○ full-colour, double hi-res video

● speaker audio playback (5.4-bit PWM @ 20KHz)
● fully general video pipeline for transcoding from modern machine to play on

Apple II using CFFA3k (or Uthernet II)

How does the CFFA3000 really work?

● implements standard device driver APIs (e.g. SmartPort) for block-level I/O
○ and emulates a Disk II

● ...otherwise undocumented
● guess: slot firmware must be using a lower level mechanism to talk to the

hardware
● are there opportunities to make use of this for increased I/O performance?

Reverse engineering the CFFA3k slot firmware

● dumped $Cn00 slot firmware, and $C800..$CFFF extended firmware
● reverse engineered code starting from standard SmartPort I/O entry points
● traced the main I/O command loop

○ No use of $C0xx I/O soft switches
○ All I/O is via memory addresses in the extended firmware address space ($CFxx)
○ “ROM” $Cnxx memory is actually RAM-backed!
○ Can modify the “firmware” (as seen by Apple II) dynamically at runtime

■ firmware itself makes heavy use of this

Core I/O processing loop

● synchronization protocol for coordinating/communicating with onboard HW
○ shared memory semaphore; Apple II and onboard HW share memory

● dispatch loop:
○ issue SmartPort I/O command to hardware
○ HW drives 6502 through sequence of operations to complete processing of command

■ some of them involve HW dynamically modifying the firmware address space to map in
code, then telling 6502 to jump to it

■ hard to get a complete firmware dump, but core logic is always mapped
● modified this dispatch loop to record a trace of operations

○ not timing critical, insert a JMP to my own code elsewhere in memory

Block I/O reads

● read operations
○ copy from $c800.$c9ff into caller’s requested buffer
○ clean up and return

● this means that $c800.$c9ff in firmware space is used as an I/O buffer!
● when 6502 issues a block read request, after some time the contents

magically appear at $c800.$c9ff
● copied from there to caller’s I/O buffer
● copying to main memory is slow

○ fastest possible fully unrolled loop is 4096 cycles
■ LDA $c800
■ STA $2000
■ LDA $c801
■ STA $2001
■ … ; 512 times

How can I make use of this internal buffer?

● could write 6502 code to access the I/O buffer and take some action
○ e.g. write a pixel to screen memory

● but anything we can do would be slower than just copying the entire buffer
into screen memory

● 6502 can only read a byte from memory once per 4 cycles
● 122800 cycles for unrolled LDA/STA loop to store double hi-res frame as fast

as possible
○ 8.3 frames/second
○ ...assuming I/O is infinitely fast
○ 92KB of code just for unrolled screen copies

Is this the best we can do?

● Can’t read from the buffer faster than this under 6502 program control
● ...but 6502 itself can access the buffer faster -- by executing it
● load 512 bytes of code into the buffer, execute it to … do stuff

○ LDA #$FF ; we know what value to store, don’t have to load from memory
○ STA $2000
○ STA $2001 ; can store a value in multiple locations
○ STA $3f02 ; ...which don’t have to be contiguous in memory
○ …

● 2+4+4+4=14 cycles to store 3 bytes, instead of 24
○ ~2x faster

● but: 2+3+3+3=11 bytes to represent 3 bytes of screen contents, instead of 3
○ ~3x less space efficient

● 512 bytes of such 6502 code executes in ~650 cycles
● Is this better?

CFFA read sequence

6502
firmware

CFFA3k
hardware

read block

unmap $c800.c9ff I/O
buffer

map block from cache,
or load from disk

300+ cycles

busy wait

ready

exec
cmd 5

ack

execute buffer (or cmd 5 = copy)

650+ cycles

600+ cycles

prefetch next block

ready

exec
cmd 1

next block

ack

(or cmd1 = exit)

Is this better? Yes!

● Note that the minimum I/O prefetch time (~600 cycles) is almost exactly how
long it would take to execute code in the buffer (~650 cycles)!

● So by the time we finish executing, the CFFA will have (usually) finished
prefetching the next block

○ we only need to wait 300 cycles for it to be mapped
○ we can’t do much about this, at least with current firmware

● we can execute up to 2TB of 6502 code, paged in 512 byte chunks, at ⅔ of
native CPU speed

○ ~650 cycles every 950
● Reads data at about 533 KB/sec

○ cf 78KB/sec using SmartPort API; 6.8x faster

Playing video

● Up to 128 screen updates/page ~ 145000/sec
● ~ 9.4 full double hi-res screen updates/sec

○ cf <8/sec for the “full frame update” approach
● i.e. a bit better in the worst case
● much better in typical case

○ most videos don’t change every pixel every frame
○ we can change as many or as few pixels as we like

● we can do other things as well
○ ...like toggle the speaker?
○ requires exact cycle counting

Strategy

● unroll the video into straight-line 6502 code that updates screen memory and
flips display switches

● ...while toggling the speaker at exact cycle timings to produce audio
● package into 512-byte chunks, stitched together with I/O code
● 533KB/sec of data → 31MB of code per minute of playback

○ ...but since we’re using a CF with GB’s of storage, this is not a problem

Strategy

● unroll the video into straight-line 6502 code that updates screen memory and
flips display switches

● ...while toggling the speaker at exact cycle timings to produce audio
● package into 512-byte chunks, stitched together with I/O code
● 533KB/sec of data → 31MB of code per minute of playback

○ ...but since we’re using a CF with GB’s of storage, this is not a problem

...We just need to write the world’s largest 6502 program.

That sounds hard, let’s write a program to do it

● Actually I already wrote (most of) this program in 2019
●][-Vision: Uthernet II video player

○ multiplexes video and audio stream into a native Apple II format
○ handles PWM audio encoding
○ understands Apple II graphics memory structure
○ encodes image frames as (D)HGR images
○ delta encoding and prioritization of changes between image frames

■ sends the bytes that will make largest visual difference to image first
■ in case we run out of time to send them all

● Needed to swap output representation to use generated 6502 code
○ instead of a bytecode representation of the video stream

● Also swapped out DHGR image encoding to use][-pix

Tricky parts (1)

● PWM audio requires toggling speaker at precise cycle intervals
● need to interleave STA $C030 with instruction stream that performs video

updates/housekeeping
○ while maintaining exact cycle timings

● wrote code to do this opcode stream interleaving

STA $C030 ; cycle 0
NOP
NOP
; … wait N-4 cycles
STA $C030 ; cycle N
; …

LDA #$34
STA $2096
STA $2807
LDA #$2A
; ...

STA $C030 ; cycle 0
LDA #$34
STA $2096
NOP
STA $C030 ; cycle N
STA $2807
LDA #$2A
; ...Audio opcode stream Video opcode stream

Merged opcode stream

Bonus - audio quality

● normally for PWM audio playback from memory you can’t fetch samples
quickly enough to play back at 22Khz

○ Fetch an 11KHz sample and play it twice
● Here we don’t have to fetch samples because we unroll the code at

generation time
● Can play audio at true 20KHz

○ ...mostly

Tricky parts (2)

● We need to keep playing audio during the 300+ cycles of I/O dead time
○ while driving the CFFA hardware and waiting for it to map the next block
○ ...and our code buffer is unmapped during this time!

● While we’re executing our 512 byte block, queue up audio samples that we
can fetch and play during the CFFA I/O (idea: Lucas Scharenbroich)

○ push audio sample values onto stack
○ carve up CFFA I/O code into ~100-cycle segments
○ generate N variants of these code segments

■ each toggles the speaker at (N, 50-N) cycle intervals
■ while driving CFFA I/O, fetching the next sample and chaining to next I/O segment

○ reuse the same code interleaving technique to generate these variants
○ these samples are played back twice at 20KHz like usual for in-memory playback

● Has more overhead: ~450 cycles instead of 300
● ...but we get audio with our video!

Lessons learned

● look at the physical hardware, don’t just dive into software
● reverse engineered low-level I/O protocol from first principles

○ a lot of it was in the datasheets :-/
● Modern Apple II peripherals tend to make use of off-the-shelf components that

perform a lot of the heavy lifting
○ cf fully custom logic
○ these are usually well documented, and often exposed directly to Apple II access

● Timing measurement trick:
○ to measure speed of timing loops, insert a STA $C030
○ then measure audio frequency with smartphone app
○ also lets you hear if you have cycle non-exactness

CFFA bugs

● SmartPort reads > 32MB aren’t handled correctly
○ ProDOS only supports 32MB volumes
○ but SmartPort should support 2^24 blocks = 8GB
○ workaround (Dave Lyons): use Extended SmartPort commands - not supported by //e

firmware, but supported internally and used by //gs firmware
● Writes to certain $CFxx memory locations causing nearby reads to become

corrupted
○ won’t affect normal operation of the card
○ timing/electrical issue in the HW?
○ problem with my particular board?

What’s next?

● finish cleaning up code and merge back to][-Vision
● Support running on //gs -- different firmware, should just need minor changes
● See what can be done with other mass storage devices
● Optimizations and algorithmic improvements to video encoding
● Other applications for paged code technique?

Links:

● (in future) code: https://github.com/KrisKennaway/ii-vision
● download video files

○ https://www.dropbox.com/sh/nzh7iv6h97g3zbc/AADMDfXMIN5tdvexM1RpIJ1ha?dl=0

https://github.com/KrisKennaway/ii-vision
https://www.dropbox.com/sh/nzh7iv6h97g3zbc/AADMDfXMIN5tdvexM1RpIJ1ha?dl=0

Bonus: Booti

● uses a CH376 USB controller on a daughterboard
● [+] hardware supports reading 65KB at a time, not just 512b
● [+] data is streamed via $C0xx I/O port (like Uthernet II)
● [-] I/O is fully synchronous; no hardware prefetch

○ would make audio difficult, although maybe the queueing technique could help
● [?] haven’t measured read throughput yet

○ but for CFFA3k, USB access is much slower than CF

Bonus: underlying HW seems to expose much more general capabilities

● full R/W access to the USB filesystem, not just disk image file
● more general USB device I/O?

