
F U N N Y M O D E  
O N T H E A P P L E / / /

PA U L H A G S T R O M , K A N S A S F E S T 2 0 2 1

I M P R O V E M E N T S : A P P L E I I + P L U S

• 128K-256K RAM

• 1.4MHz to 1.8MHz CPU

• Serial port, Silentype
printer port

• RGB output, 6 bit audio

• Clock nearly built in

• Chainable disk drives, one
built in.

• Better keyboard, numeric
keypad

• 80 columns, lowercase, new
graphics modes

• Emulation mode for Apple
IIs circa 1980. 48K Apple II
Plus.

E M U L AT I O N M O D E !

• I can buy an Apple /// and still have all that Apple II
software available!

• Maybe I could write cool Applesoft programs that
used the clock, 256K of memory.

• Except, no. The main features of the Apple /// are not
available in emulation mode. You have 48K.

• Apple is mean.

1 2 8 - 2 5 6 K

• 6502 can see 64K at once.

• But we want more.

• Bank switching: 6502 refers
to something within 64K,
but Apple /// positions that
64K window over a larger
RAM area.

C O N T R O L  
V I A R E G I S T E R S

• Versatile Interface Adapter. 6522. I/O
device. Controls machine behavior.
Similar to (same as?) softswitches.

• FFEF: bank register. F0=bank 0,
F1=bank 1...

• FFDF: environment register. 
CPU speed, $Cx I/O exposed, $Fx
ROM/RAM, upper write protect, ...

• This is how you control the fancy
things that Apple /// does.

T H E L O W E R 4 8

• Compared to the Apple II, the
D000-FFFF space is (almost) just
RAM (if you hide the A3 ROM). But
you could put the A2 ROM in there
and lock it.

• Many of the I/O switches are the
same, in Cxxx.

• The lower 48K can pretty much act
like an Apple II, with a little bit of
translation of I/O switches enabled
in hardware, and ROM loaded into
D000-FFFF. That's Apple II
Emulation mode.

M O R E C H I P S T O M A K E I T W O R S E

• Why can't it run 64K software?

• Memory banking in the LC is different

• D0-DF RAM 1, RAM 2, ROM

• E0-FF RAM, ROM

• High parts of the FF page are effectively
soft switches on the /// and must be
dodged.

• Cxxx soft switches are not identical
(though mostly the same).

M O R E C H I P S T O M A K E I T W O R S E

• Probably would not have been
impossible, but would not have been
trivial either.

• Seems not just the addition of a
spiteful hardware lock, even if it
makes a more dramatic story.

• Apple II emulation mode protects
the ROM area, translates the I/O
switches where needed, fills in
missing graphics modes (text, mixed
GR/text).

A P P L E] [E M U L AT I O N D I S K (1 . 1)

• To get to emulation mode, you boot a pre-boot disk.

• Provides options for the 
emulated machine.

• Put in new disk, boot.

• The bargain: you are 
protected from injuring 
yourself on the Apple ///, 
but you can't reach the 
Apple ///'s features.

• Largely because VIAs are 
inaccessible.

E M U L AT I O N D I S K O R G A N I Z AT I O N

• When you hit return, the
appropriate segments are
loaded into high memory,
the machine control
registers are set for
Emulation mode, memory
above $C000 is write
protected, and control
transfers to the Apple II
auto-start routine.

• If they're loaded from disk, they can be changed on disk.
You can rewrite your ROM, Applesoft, disk/serial/comm
card firmware. You can actually also change the font.

G E O R G E O E T Z E L : H O T R O D I I I

(SOFTALK J U L , A U G , S E P 1 9 8 3)

• Three part series
about tweaking
Apple II software to
run on the
Apple /// with
access to Apple ///
hardware.

G E O R G E O E T Z E L : H O T R O D I I I

(SOFTALK J U L , A U G , S E P 1 9 8 3)

• Part 1: Modifying the Apple II Emulation disk to modify
ROM: Reset to monitor instead of to reboot. Provides
TRACKMOVER track-at-once loader/saver.

• Part 2: Swapping in ROM routines to handle Apple ///
game controllers and patching games to use them.

• Part 3: Changing the character set, handling lowercase
display and input. Expanding memory a bit, speeding
up the processor, "hybrid mode."

T R A C K M O V E R
• Softalk type-in program, included on the Washington Apple

Pi EMM 11b disk (translated to Applesoft).

• Surprisingly useful. I ran it almost exclusively in an Apple II
emulator, since it is DOS 3.3 Applesoft.

W H AT T H E E M U L AT I O N D I S K D O E S

• After setting
parameters, the
emulation disk loads in
the appropriate ROM
images to $C0-FF.

• Sets the environment
variables.

• Turns on emulation
mode (no more access
to VIAs), boots.

F U N N Y M O D E  
(S I L LY M O D E , H Y B R I D M O D E , S ATA N M O D E)

• The experiment: What if we did NOT turn on Apple II Emulation
mode? Retaining access to the VIA registers and the general
features of the Apple ///?

• access to memory beyond 64K (including ROM) works quite
differently. Things written for the Apple II are not going to
address it correctly. And some hazard using indirect ZP.

• VIA registers sitting at an important end of the monitor ROM.

• Graphics/text handling (additional modes) differs.

• Apple II stuff was largely written essentially right on the metal.

B O B E T H E R E D G E V S . F U N N Y M O D E

• Internally, a well-
known case was made
against encouraging
use of "funny mode."
Partly against for
support/marketing
reasons, but outlines
technical challenges.

B U T L E T ' S T R Y A N Y W AY

• Let's see how it goes. What problems arise, how can
we get around them?

•

M O N I T O R P R O B L E M S

• In the monitor ROM, the location of the 
VIA registers is right in the middle of the 
command table. So you can CALL-151, 
but because part of the table is missing, 
it is not going to understand you.

• So, move the tables. The /// has no cassette port, so we can
use the cassette read and write areas. (Oetzel outlined what
needs changing, I adapted it slightly.)

• TRACKMOVER: read track 5 to $5000, 9 to $7000, fix, write
back out

T W E A K E N V I R O N M E N T R E G I S T E R

• Emulator disk sets: FC

• 1MHz, $Cxxx I/O, video on, reset enabled 
r/o high memory, normal stack, $Fxxx from RAM.

• If we want access to more memory (or to swap in INT on the go or
something), we can unlock it: F4

M A K E D O S 3 . 3 L E S S D A N G E R O U S

• DOS 3.3 will explicitly store
a 00 in $E000 as it boots, to
force the language card to
reload.

• This will damage BASIC and
we don't have a language
card. We don't want this.

• NOP NOP NOP the code

• BFD3:EA EA EA

• Format a new blank disk

A N D N O P O U T E M U L AT I O N M O D E

• TRACKMOVER:
read track 0 to
$4000.

• 4574: F4

• 4582: EA EA

• Write back out.

H O W ' S I T G O I N G S O FA R ?

• Interesting. Ok, it boots. But
it looks kind of oddly
colorful. Why?

• Text page 1 is $400 just like
on the Apple II.

• Text page 2 is at $800 and
controls the foreground
and background color of
the character on page 1.

• We could clear it to white on
black, but... BASIC programs
live at $800.

M O V E B A S I C T O S TA R T AT $ C 0 0

• We can tell Applesoft to
put its programs at $C00
instead of $800.

• This does that, part of a
larger embedded utility
designed to run at boot
time. Moves BASIC to
$C00, initializes the
program space (NEW), then
sets the colors to B&W.

• I call this in a HELLO EXEC
that BRUNs this and then
runs HELLO2.

F U N N Y U T I L I T I E S

• I adapted Oetzel's utilities into an Applesoft &-handler
(AMPERSILLY). BRUN it and it

• Sets up the & handler

• Relocates BASIC to $C00

• &1/&2 for 1MHz/2MHz speed

• &F/&N for video off/on

• &L set background of line in $40 (64) to pattern in $E3 (227).

• &C clear text background to white on black (set it all to $F0).

N O W W H AT ?

• I've tried a few things as proofs of concept.

• Detecting shifted keys by looking at the $C008 keyboard flags.

• Speeding up and slowing down the processor (don't try to do I/O at
2MHz!).

• Beeping with the built-in Apple /// beeper at ($C040).

• Scrolling graphics, bouncing a ball in the colors of page 2 without affecting
(or while independently scrolling) the text of page 1.

• Swapping in other banks of memory (but beware: you need to have $9D00-
$9FFF in banks you switch in if anything like character I/O talks to DOS).
BRUN BANKDOS500,A$500 will copy 9D00-9FFF from bank F0 to bank F1.

O T H E R T H I N G S Y O U C A N D O

• Oetzel's articles cover:

• Changing the font (Apple /// font is replaceable in software), you can use
fonts from the DOS Toolkit.

• Making Reset dump you to the monitor rather than reboot the machine so
you don't have to go through the Emulation boot step again.

• Allowing for lowercase display and input by checking the shift key and
adding lowercase fonts, removing FLASH characters.

• Also I fiddled with:

• Putting the emulator ROMs and DOS 3.3 on the same disk so you don't
have to swap disks. Uses something like half the disk. See also Martin
Haye's 2017 HackFest entry.

C A N I R U N A I R H E A R T O N A N A P P L E / / /
L I K E S U P E R FA S T ?
• This is not really a route to just running Apple II stuff on an

Apple ///, mostly.

• It's providing access to the Apple /// hardware within an Apple II
framework, but things written for DHGR, or for 64K/128K RAM
cards can't address Apple /// memory. It was baroque on the
Apple II, too.

• Best option is to rewrite Apple II things, but maybe minimally, to
address memory or graphics modes properly.

• But maybe as interesting might be just writing new things on the
Apple ///, but with some of the comforts of the Apple II available.

