PAUL HAGSTROM, KANSASFEST 2021

FUNNY MODE
ON THE APPLE ///

IMPROVEMENTS: APPLE Il + PLUS

128K-256K RAM

1.4MHz to 1.8MHz CPU

Serial port, Silentype
orinter port

RGB output, 6 bit audio

Clock nearly built in

Chainable disk drives, one
built in.

Better keyboard, numeric
keypad

80 columns, lowercase, new
graphics modes

Emulation mode for Apple
lIs circa 1980. 48K Apple |l
Plus.

-MULATION MODE!

| can buy an Apple /// and still have all that Apple |l
software available!

Maybe | could write cool Applesoft programs that
used the clock, 256K of memory.

Except, no. The main features of the Apple /// are not
available in emulation mode. You have 48K.

Apple is mean.

1 2 8 2 5 é K Apple /// Computer Information e Apple /// Level 2 Service Reference Manual

@copia computar nc.

o0 [= Memory Map
$00¢ | RAM K 128K

1FFF
s2060 BANK 0

6502 can see 64K at once.
But we want more. aw| oz || 41 2o

$9902

Bank switching: 6502 refers

to something within 64K, .
but Apple /// positions that sl IO | e

64K window over a larger

$FoQR

RAM area.

F@gg
R OM (LK) | rrer

Chapter 2 of 28 e Apple Computer Inc e 1982 Page 0003 of 0032

C O N T R O |_ Apple /// Computer Information e Apple /// Level 2 Service Reference Manual
— @coria computar inc.
V|A REG'ST:RS 9990 [~ - Memory Map

- 9999
s190¢ RAM (8K 128K
1FFF

BANK @

Versatile Interface Adapter. 6522. 1/O
device. Controls machine behavior.
Similar to (same as?) softswitches.

RAM (32K) RAM (32K

FFEF: bank register. FO=bank 0,
F1=bank 1...

FFDF: environment register.
CPU Speed, $Cx 1/0 exposed, $Fx RAM (2460 m
ROM/RAM, upper write protect, ...

This is how you control the fancy
things that Apple /// does.

‘ H — |— O V\/ — R 4 8 Apple /// Computer Information e Apple /// Level 2 Service Reference Manual

@icopia computar Inc.

spe00 — ——— e Memory Map
Compared to the Apple Il, the sme AN 60 128
DO0O-FFFF space is (almost) just

RAM (if you hide the A3 ROM). But
you could put the A2 ROM in there
and lock it. RAM (32€)

BANK @

RAM (32K

Many of the I/O switches are the
same, in Cxxx.

The lower 48K can pretty much act
like an Apple I, with a little bit of SR | SITIT-N

translation of I/O switches enabled
in hardware, and ROM loaded into [SIRED o

DO0O-FFFF. That's Apple |l
Emulation mode.

Chapter 2 of 28 e Apple Computer Inc e 1982 Page 0003 of 0032

MORE CHIPS TO MAKE IT WORSE

Why can't it run 64K software?

Apple /// Computer Information e Apple /// Level 2 Service Reference Manua

@cooia computar nc.

I | ' : se009 [— ———— M M
Memory banking in the LC is different oy Map

5200 BANK 0

DO-DF RAM 1, RAM 2, ROM >

$5000

EO-FF RAM, ROM oo | iy

$800¢

$9007

9FFF

High parts of the FF page are effectively

$AQ00

soft switches on the /// and must be |
$Co03 -

dOdged. $0900 RAM (24K) —
$F999 :::

Cxxx soft switches are not identical
(though mostly the same).

Chapter 2 of 28 ¢ Apple Computer Inc e 1982 Page 0003 of 0032

MORE CHIPS TO MAKE IT WORSE

Probably would not have been

Apple /// Computer Information e Apple /// Level 2 Service Reference Manua

impossible, but would not have been
o . . 9099 — -——— i Memory Map

trivial either. l

Seems not just the addition of a o

spiteful hardware lock, even if it .

makes a more dramatic story.
Apple Il emulation mode protects -
the ROM area, translates the I/O I N | IEIT™N
switches where needed, fills in T
missing graphics modes (text, mixed FiG 21

Chapter 2 of 28 ¢ Apple Computer Inc e 1982 Page 0003 of 0032

GR/text).

APPLE || EMULATION DISK (1.1)

To get to emulation mode, you boot a pre-boot disk.

Provides options for the
emulated machine.

Put in new disk, boot.

The bargain: you are
protected from injuring
yourself on the Apple ///,
but you can't reach the
Apple ///'s teatures.

Largely because VIAs are
inaccessible.

Apple /|| |lapple3] - MAME 0.233 (LPG64)

apple I EMULATION MODE

7 LANGUAGE : FIAANENTSl INTEGER BASIC
CARD: AT COMMUNMICATIONS
ERUD RATE: 118 386 6608 KGR

2488 4508 Pe0B 13206
LINE FEED: [¥E=EINSN] DISABLED

LINE WIDTH: 48 72 88 132 B CHARACTERS
CARRIAGE RETURMW DELAY: OW [OIdd

[RETURN] - BOOT apple I DISK
[ESCAFE | - RESTORE DEFAULTS
el VAL IR
(], - SELECTION KEYS

-MULATION

When you hit return, the
appropriate segments are
loaded into high memory,
the machine control
registers are set for
Emulation mode, memory
above $C000 is write
porotected, and control
transfers to the Apple |l
auto-start routine.

Destination
Address

C500—C5FF
C600—C6FF
C700—-C7FF
C800—CFFF
DO00—-D7FF
D800—DFFF
EOOO—-F7FF

F800—FFFF

C500—C5FF
C600—C6FF
C700—C7FF
C800—CFFF
DO00—F7FF
F800—FFFF

Boot
Address

Disk
Block

DISK ORGANIZATION

Description

Integer Basic Image

2000—20FF
2100—-21FF
2200—22FF
2300—-2AFF
2B00—32FF
3300—-3AFF
3B00—52FF
5300—5AFF

10

10

11
12—15
15—21
21—-23
23—29
29—2D

Slot 5 (Comm card) ROM
Slot 6 (disk) ROM

Slot 7 (Comm card) ROM
Expansion I/0 ROM (empty)
Programmers aid #1

D8 ROM (empty)

Integer Basic

Autostart Monitor

Applesoft Basic Image

S5BO0—5BFF
5CO00—-5CFF
5D00—-5DFF
SEQ00—65FF
6600—8DFF
8EOQ0—95FF

2D
2E
2E
2F —32
33—46
47 —4A

Slot 5 (serial card) ROM
Slot 6 (disk) ROM

Slot7 (Comm card) ROM
Expansion I/0 ROM (empty)
Applesoft Basic

Autostart Monitor

Table 1. Address guide to the two Basic images after booting the Emulation
disk. All addresses and disk blocks are hexadecimal values.

't they're loaded from disk, they can be changed on disk.

You can rewrite your ROM, Applesoft, disk/serial/comm

card firmware. You can actually also change the font.

GEORGE OETZEL: HOT ROD IIl
(SOFTALK JUL, AUG, SEP 19283)

Three part series
about tweaking
Apple Il software to
run on the

Apple /// with
access to Apple ///
hardware.

GEORGE OETZEL: HOT ROD IIl
(SOFTALK JUL, AUG, SEP 19283)

Part 1: Moditying the Apple Il Emulation disk to modity

ROM: Reset to monitor instead of to reboot. Provides
TRACKMOVER track-at-once loader/saver.

Part 2: Swapping in ROM routines to handle Apple ///
game controllers and patching games to use them.

Part 3: Changing the character set, handling lowercase
display and input. Expanding memory a bit, speeding
up the processor, "hybrid mode."

TRACKMOVER

* Softalk type-in program, included on the Washington Apple
Pi EMM 11b disk (translated to Applesoft).

* Surprisingly useful. | ran it almost exclusively in an Apple |
emulator, since it is DOS 3.3 Applesoft.

WHAT THE EMULATION DISK DO

After setting
parameters, the
emulation disk loads in
the appropriate ROM
images to $CO-FF.

Sets the environment
variables.

Turns on emulation

mode (no more access
to VIASs), boots.

[T
N

:$F FDO is the zero-page control register.
A9 00 LDA #3$00 :Select zero page = 0.
8D DO FF STA $FFDO

:$F FDF is the environment control register.

A9 FC LDA #3FC ‘Select environment—
8D DF FF STASFFDF discussed below.

. $F FEF selects memory bank and 1/0 status.

AD EF FF LDA $FFEF ‘Retain same
8D EF FF STA $FFEF 'memory bank.

-$F FE3 is the data direction register for the
A port of the E VIA. Set the

:Emulation bit to output status, so the

-STA $FFEF will turn on Emulation.

AD E3 FF LDA $FFES ‘Set the Emulation mode

- 0940 ORA #$40 ‘bit in data direction

8D E3 FF STASFFES3 ;control register.
AD EF FF LDA $SFFEF :Reselect memory
29 BO AND #$B0O :bank 0, and turn on
8D EF FF STA SFFEF :Emulation mode.

FUNNY MODE
(SILLY MODE, HYBRID MODE, SATAN MODE)

The experiment: What if we did NOT turn on Apple Il Emulation
mode? Retaining access to the VIA registers and the general
features of the Apple ///7?

access to memory beyond 64K (including ROM) works quite
difterently. Things written for the Apple Il are not going to
address it correctly. And some hazard using indirect ZP.

VIA registers sitting at an important end of the monitor ROM.
Graphics/text handling (additional modes) ditters.

Apple Il stuft was largely written essentially right on the metal.

BOB ETHERE

Internally, a well-
known case was made
against encouraging
use of "funny mode."
Partly against tor
support/marketing
reasons, but outlines
technical challenges.

D G

= VS.FUNNY MOD

BUT LET'S TRY ANYWAY

Let's see how it goes. What problems arise, how can
we get around them?

MONITOR PROBLEMS

In the monitor ROM, the location of the
VIA registers is right in the middle of the
command table. So you can CALL-151,
but because part of the table is missing,
it is not going to understand you.

So, move the tables. The /// has no cassette port, so we can
use the cassette read and write areas. (Oetzel outlined what
needs changing, | adapted it slightly.)

TRACKMOVER: read track 5 to $5000, 9 to $7000, fix, write
back out

TWEAK ENVIRONMENT REGISTER

Emulator disk sets: FC

TMHz, $Cxxx 1/O, video on, reset enabled
r/o high memory, normal stack, $Fxxx from RAM.

It we want access to more memory (or to swap in INT on the go or
something), we can unlock it: F4

Value Bit Function Bit=0 Bit = 1

01 FOOO..FFFF RAM ROM

02 ROM# ROM#2 ROM#1

04 stack alternate normal {true 0100)
08 C000..FFFF read/write read only

10 reset key disabled enabled

20 video disabled enabled

40 C000..CFFF RAM /0

80 clock speed 2MHz 1 MHz
Note: ROM#2 doesn’t exist.

Table 6. Environment register ($FFDF).

MAKE DOS 3.3 LESS DANGEROUS

* DOS 3.3 will explicitly store
a 00 in $EQ0OQ as it boots, to
force the language card to
reload.

* This will damage BASIC and

we don't have a language
card. We don't want this.

* NOP NOP NOP the code

« BFD3:EA EA EA

* Format a new blank disk

AND NOP OUT EMULATION MO

W,
I

:3F FDO is the zero-page control register.

A9 00 LDA #3500 :Select zero page = 0.
TRACKMOVER: 8DDOFF STAS$FFDO
read traCk O tO :$F FDF is the environment control register.

A9 FC LDA #$FC ‘Select environment—
$4000 8B.DEAFF STA $SFFDF :discussc;c\inkr)cricgw.r

. $F FEF selects memory bank and 1/0 status.

4574 FA4 ADEFFF LDASFFEF Retain same

8D EF FF STA $FFEF 'memory bank.

-$F FE3 is the data direction register for the
4582 EA EA A port of the E VIA. Set the
) :Emulation bit to output status, so the
-STA $FFEF will turn on Emulation.

. AD E3FF LDA $SFFES ‘Set the Emulation mode
Write back out. 09 40 ORA #$40 :bit in data direction
8B-E8FF STASFFES3 ;control register.
AD EF FF LDA $FFEF :Reselect memory
29 BO AND #$B0 ‘bank 0, and turn on
8D EF FF STA $FFEF ‘Emulation mode.

HOW'S IT GOING SO FAR?

Interesting. Ok, it boots. But
it looks kind of oddly
colorful. Why?

Text page 1 is $400 just like
on the Apple II.

Text page 2 is at $800 and
controls the foreground

and background color of
the character on page 1.

We could clear it to white on
black, but... BASIC programs
live at $800.

MOVE BASIC TO START AT $CO0O

We ca
put Its

n tell Applesoft to
orograms at $C00

instead of $800.

This does that, part of a

larger

embedded utility

designed to run at boot
time. Moves BASIC to

$CQ0,

Initializes the

porogram space (NEW), then
sets the colors to B&W.

| call t
that B
runs

nis in a HELLO EXEC
RUNSs this and then

ELLOZ.

FUNNY UTILITIES

| adapted Oetzel's utilities into an Applesoft &-handler
(AMPERSILLY). BRUN it and it

Sets up the & handler

Relocates BASIC to $C00

&1/&2 tor TMHz/2MHz speed

&F/&N tor video oft/on

&L set background of line in $40 (64) to pattern in $E3 (227).

&C clear text background to white on black (set it all to $FO).

NOW WHAT?

I've tried a few things as proofs of concept.
Detecting shifted keys by looking at the $C008 keyboard flags.

Speeding up and slowing down the processor (don't try to do I/O at
2MHz!).

Beeping with the built-in Apple /// beeper at ($C040).

Scrolling graphics, bouncing a ball in the colors of page 2 without affecting
(or while independently scrolling) the text of page 1.

Swapping in other banks of memory (but beware: you need to have $9D00-
$9FFF in banks you switch in if anything like character 1/0O talks to DOS).
BRUN BANKDOS500,A%$500 will copy 9D00-PFFF from bank FO to bank F1.

OTHER THINGS YOU CAN DO

Oetzel's articles cover:

Changing the font (Apple /// font is replaceable in software), you can use
fonts from the DOS Toolkit.

Making Reset dump you to the monitor rather than reboot the machine so
you don't have to go through the Emulation boot step again.

Allowing for lowercase display and input by checking the shitt key and
adding lowercase fonts, removing FLASH characters.

Also | fiddled with:

Putting the emulator ROMs and DOS 3.3 on the same disk so you don't
have to swap disks. Uses something like half the disk. See also Martin
Haye's 2017 HackFest entry.

CAN | RUN AIRHEART ON AN APPLE ///
LIKE SUPER FAST?

This is not really a route to just running Apple Il stuff on an
Apple ///, mostly.

It's providing access to the Apple /// hardware within an Apple |
framework, but things written for DHGR, or for 64K/128K RAM

cards can't address Apple /// memory. It was baroque on the
Apple Il, too.

Best option is to rewrite Apple Il things, but maybe minimally, to
address memory or graphics modes properly.

But maybe as interesting might be just writing new things on the
Apple ///, but with some of the comforts of the Apple Il available.

