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Why AppleCrate?

 In the early 1990s, I became interested in “clustered”
machines:  parallel computers connected by a LAN.

 This interest naturally turned to Apple II computers,
and the possibility of creating an Apple II “blade
server”.

 A lucky eBay bid in 2003 netted me 25 Apple //e main
boards (14 enhanced) for $39, including shipping!

“Because it can be done!”



AppleCrate I

 An 8-machine Apple //e cluster,
all unenhanced machines.

 ROMs modified for NadaNet
boot (from server)

 Powered by PC power supply
 Fine for a desktop, but quite

fragile for travel!



Why AppleCrate II?
 Out of the 25 main boards, 14 were Enhanced //e’s.

 Only 512 bytes of self-test space in ROM required a new
“passive” network boot protocol.

 I wanted a ‘Crate that was mechanically robust and
compact enough to travel.

 I wanted to scale it up to 16 machines, and
incorporate a “master” for convenience.

 I wanted better quality sound output.

A machine to support
parallel programming on Apple II’s.



AppleCrate II
 17 Enhanced //e boards

 1 “master” and 16 “slaves”
 Self-contained system

 I/O can be attached to the top
board, so it is the “master”

 All boards stacked horizontally
using standoffs for rigidity

 Total power ~70 Watts
 ~4.2 Watts per board!

 17-channel sound
 External mixer / filter / amplifier

 GETID daisy chain causes IDs
to be assigned top-to-bottom



Parallel Programming

 The fundamental problem is maximizing the degree
of concurrent computation to minimize time to
completion.

 To achieve that it is necessary to decompose a
program into parts that:
 Require sufficient computation so that communication cost

does not dominate TTC
 Are sufficiently independent so that communication does not

dominate TTC
 Do not leave a few large/long sequential tasks whose

computation will dominate TTC



Pipeline Parallelism
 Processing is divided into “phases” or “stages” that:

 Require approximately the same time to completion
 Can be performed essentially independently on many

different data sets

 Balancing the times required by each stage
independent of the data can be difficult.
 The pipeline runs at the speed of the slowest stage.
 A problem in any stage is a problem for the whole pipeline.

This approach can be compared to
an assembly line.



Process Parallelism
 Processing is divided into separate processes that:

 Can take any amount of time or resource
 Can be performed independently on different data sets
 Any particular data set may have a unique path through

the network of processes.
 Data sets (“jobs”) queue for each process

 Balancing processing resources to minimize
queueing can be very difficult.

This approach can be compared to
scheduling a machine shop floor.



Data Parallelism
 Some problems naturally “fall apart” into many

nearly identical independent pieces that:
 Are sufficiently fine-grained that none dominates TTC
 Can be easily aggregated to balance computation with

communication

 These problems are “made to order” for parallel
computation, since decomposition is trivial.

Often so easy it’s known as
“embarrassing parallelism”



Examples of
Data Parallelism

 Monte Carlo simulations
 Database querys
 Most transaction processing

 But must still check for independence

 Mandelbrot fractals



 RUNs an Applesoft program on all serving machines
 Performs standard AppleCrate initialization

 Takes census of serving machines
 Boots any machines awaiting boot
 Re-takes census

 Starts Message Server if needed
 For each serving ‘Crate machine, &POKEs amd

&CALLs the BPRUNNER program at $200
 Broadcasts the BASIC program using “boot hack”
 Registers “check-in” of machines running program

BPRUN
(Broadcast Parallel Run)

Loads and starts all slave machines
in parallel.



 Each point is completely independent!
 A “job” could be anything from a single point to all

53,760 points!
 I chose 280 points, or a line, for each “job”

 The master machine queues jobs (in random order)
 Each idle slave machine:

 Takes the first job in the job queue,
 Executes the computation, and
 Enqueues the result for the master to display

Parallel Mandelbrot

The result is an almost linear
increase in the speed of execution.



Mandelbrot Master
 2180  REM  Job parameters
 2190 N = 192 : P = 20 : REM 192 jobs, max of 20 at a time
 2200 JN = 0:RN = 0:SCH = 0 : REM Start empty
 2210 :
 2220  REM  Build and maintain job queue
 2230  IF JN < N AND SCH < P THEN  GOSUB 2400: REM  Sched another job
 2240  IF RN < N THEN  GOSUB 2500: REM  Get result of job
 2250  IF RN < N GOTO 2230
 2260 :
 2270  PRINT  CHR$ (7)"All jobs completed."
 2320  END
 2330 :
 2400  REM  Schedule new job
 2410 JN = JN + 1
 2430  POKE BUF,LM%(JN - 1): REM  Line number
 2440  & PUTMSG (2, JQ, 8, BUF) : REM  Enqueue job in JQ
 2460 SCH = SCH + 1
 2470  RETURN
 2480 :
 2500  REM  Receive and display job result
 2560  & GET MSG# (2, RQ, LL, BUF) : REM Get result from RQ
 2570  IF PEEK(1) THEN FOR I = 1 TO 100: NEXT I: RETURN : REM Delay if no result
 2580 SCH = SCH - 1:RN = RN + 1 : REM One less thing to do, one more thing done.
 2590 PY =  PEEK (BUF)
 2600 H =  INT (PY / 8):L1 = PY - H * 8 : REM Compute start of HGR2 line PY
 2604 L3 =  INT (H / 8):L2 = H - L3 * 8
 2606 LINE = 4 * 4096 + L1 * 1024 + L2 * 128 + L3 * 40
 2607  FOR I = 0 TO 39: POKE LINE + I, PEEK (BUF + 2 + I): NEXT I : REM Display line
 2610  RETURN

You can see why it’s called
embarrassing parallelism!



 A “pure communication” program
 Each slave is associated with a Message Server

input queue
 The queues are “primed” with three messages each
 Each slave machine:

 Gets the first message from the queue,
 “Ages” the message by 1, and
 Puts the message on a random recipient’s queue

• Until each message has been passed 50 times

RatRace

2850 messages are sent
and received!



RatRace Program
 600  REM  Message passing loop
 610  &  GET MSG#(2,IQ,L,BUF): REM  Receive a message
 630  IF  NOT  PEEK (1) GOTO 700
 640  PRINT  CHR$ (7);: REM  Delay 100 ms. & flash LED
 650 K = K + 1: REM  Timeout counter
 660  IF K < 50 GOTO 600
 680  END : REM  If 15 seconds w/o message.
 690 :
 700  REM  Increment message age and pass it on...
 710 K = 0: REM  Reset timeout counter
 740 S =  PEEK (BUF + 1): REM  Message "age"
 750  IF S = 50 GOTO 600: REM  Max trips--it stops here.
 760  POKE BUF + 1,S + 1: REM  Inc age by 1 and send it on.
 770 D =  INT ( RND (1) * NC) + 3: REM  Random destination, 3..NC+2
 800  & PUTMSG#(2,Q + D,20,BUF)
 820  IF  NOT  PEEK (1) GOTO 600
 830  PRINT "PUTMSG err."
 840  END

All communication, no computation.



Crate.Synth: Master

 Performs standard AppleCrate initialization
 Reads music file containing voice tables and music

streams for each “oscillator” machine
 Loads needed voices and music into each slave
 Loads synthesizer into each slave and starts it

(waiting for &BPOKE)
 Starts all slaves in sync when requested

This process could benefit
substantially from parallel loading.



Crate.Synth: Slaves

 Waits for master’s &BPOKE to start
 Fetches commands from music stream that:

 “Rest” for T samples (11,025 samples/second), or
 “Play note N for T samples in current voice, or
 Change to voice V, or
 Stop and return to SERVE loop.

Any oscillator can play
any voice at any time.



Questions and discussion...



POKE (A Typical Protocol)

POKE Request
POKE Ack

Data packets

Data Ack/Nak

...

8
8

256
256

?

8



Control Packet Format
Request Request

Modifier
Dest From Address Length Cksum

  Request identifies all control packets of a given request type
 PEEK, POKE, CALL, etc.

  Modifier specifies the role of the packet within the protocol
 Request, Request Ack, Data Ack, Nak

  Dest is the target machine ID
  From is the sending machine ID
  Address (generally) specifies an address in the target machine
  Length (generally) specifies a data length
  Cksum is an EOR checksum of all bytes in the packet

Control packets are ~1ms long.



Nadanet Data Format

Locked
or Idle

ONE
8 cy

ZERO
16 cy

ONE
31 cy

ZERO
8 cy

ONE
8 cy

Bit 7
8 cy

Bit 6
8 cy

...

Bit 1
8 cy

Bit 0
8 cy

ZERO
22-23 cy

ONE
8 cy

Bit 7
8 cy

Bit 6
8 cy

......

Bit 1
8 cy

Bit 0
8 cy

ZERO
(Idle)

...

End of
checkbyte

Packet end:

Interbyte separator:

Start of packet:

Servo
edge

Servo
edge

Coarse
sync

Start
sync

30-31 cy

71 cy



NadaNet Arbitration

 Always listen before sending
 Wait for net to be idle for 1 millisecond + ID * 22cy

 Lower ID machines have higher arbitration priority

 Seize net by forcing HIGH state
 Only 11-cycle sample-to-seize window for idle net collisions

 Consequences:
 Network is “locked” until it is idle for longer than 1ms.
 All requests satisfy this requirement and so are atomic.


