
-·

~ .~ J < ;

' - ""

Twilight ll''Generation 2 Module Format
Reference ,

.· June 14, 1993 flevision
Featuring Twilight~! v1.1

James R. Mari.;:ondo .

Part of the Twilight II v1.1 Developer Kit

Copyright© 1992-3, Jame~?R. Maricondb ~ jt
All Rights Resr;rved '+'

Distribute freely.
·'

Introduction

If you feel some parts of this document are vague, let us know! We want to make everything as clear as possible
for you! This document will be updated as time goes on to be clearer and more complete and to reflect any
modifications to the format.

The Generation 2 Module Format (G2MF) represents a vast change from the way modules were previously called.
Twilight I vl.O brought a very simple module format (see the Twilight I developer kit for more information.) But
along with that simplicity was lack of power, and lack of expansion ability. The G2MF, as implemented in
Twilight ll, represents a vast step foreward. It has been designed with all the present and potential future needs in
mind. (Old modules are not directly compatible and need to be recompiled- sorry.)

At all times, try to keep your module changing the screen enough to prevent burn in! Use some descretion on this
issue; when modules are automatically switched after a given amount of time (to be implemented in a future
version of Twilight ll) hopefully your module won't have to worry so much about protecting the screen (since the
next module will probably change the screen in a different way).

In addition to the documentation contained within this document, please note that we also have provided sample
sample module source code inC, Orca/M Assembly, and Merlin Assembly.

Very special thanks to the fantastic beta testers who contributed direct suggestions toward improving this
document or the G2MF in general!

For the future we are looking into adding some IPC requests that modules can use to make modules featuring
setup easier to write. This will be for the next significant revision of T2.

This documentation is provided only as interim specifications to serve you until the Twilight II Module Format
filetype note (FTN) comes out from Apple Computer's Developer Technical Support center, hopefully this July.

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS

Twilight II Module File Format

A Twilight ll module is defined by a file with filetype $BC (Generic Load File- GLF) auxtype $4004
(suggested abbreviation: T2M) with a data fork containing a routine capable of handling at least a B1ankT2
message, and a resource fork containing a minimum of the following:

Resource Type Resource ID Description
rLETextBox2 ($800B) $0010DD01 Module specific message to be printed in the "Abou~ Module" dialog box.
rlcon ($8001) $0010DD01 Module specific icon to be displayed in the "About Module" dialog box.
rVersion ($8029) $00000001 Version resource for the module.
rT2Modu1eF1ags ($D001) $0000001 Special resource similar to rCDevF1ags in concept.

In addition, it is recommended the following are also present:

Comment for the user, for Fmder 6.0. rCornment ($802A)
rCornment ($802A)

$00000001
$00000002 Message to tell the user to access modules thru 1'2, not by double-click.

The about module window may eventually display your about LETextBox2 string in a textEdit control, so be
prepared for this.

The Rez definition for the format of rT2Modu1eF1ags is as follows:

type rT2ModuleFlags {
byte = $01;

} i

hex unsigned word;
byte;
hex unsigned word;
hex unsigned word;
pstring [25];

I* module flags version -use 1 *I
I* module flags word *I
I* enabled flag (unimplemented) *I
I* minimum T2 version required *I
I* reserved *I
I* module name *I

Currently, these bits of the flag word of rT 2Modu 1 eF 1 ag s are defined and implemented:
BitO ($0001) fSetup

The module supports setup. The module must be capable of receiving and doing something specific for
MakeT2, SaveT2, LoadSetupT2, and HitT2 (minimum.)

Bit 1 ($0002) fFadeOut
The module wants the previous screen to fade out before receiving a B1ankT2 message. After fading out, the
SCBs, palettes, and pixel data will be set to NIL. There is no need for you to re-zero them if you have this bit
set!

Bit2 ($0004) fFadein
The module wants the saved screen to fade in after returning from a B1ankT2 message.

BitJ ($0008) fGrafPort320
This bit when set tells Twilight ll to open a new port and then set all the SCBs to 320 mode before calling
B1ankT2. Twilight ll will save the old port. open up a new port, set the current port to the new port, and then
set all the SCBs to use palette $0,320 mode, and then will set the Loclnfo of the new port to have a bounds
of (0,0,200,320) and a visRgn of the same size.

Bit4 ($0010) fGrafPort640
This bit when set tells Twilight ll to open a new port and then set all the SCBs to 640 mode before calling
B1ankT2. Twilight II will save the old port, open up a new port. set the current port to the new port, and then
set all the SCBs to use palette $0, 640 mode, and then will set the Loclnf o of the new port to have a bounds
of (0,0,200,640) and a visRgn of the same size.

Bit5 ($0020) fLoadSetupBoot
LoadSetupT2 will be called right after the module is loaded (either at boot time, or when the CDev window is
being closed), and Un1oadSetupT2 will be called only right before your module is being disposed of.

Bit 6 ($0040) fLoadSetupB1ank
LoadSetupT2 will be called right before B1ankT2, and Un1oadSetupT2 will be called right after

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 2

BlankT2, not when the module has been just loaded.
Bit 7 ($0080) fOpenRForkWriteEnabled

Open the module's resource fork with read and write access instead of normal read access only before sending
MakeT2. This bit is for special circumstances only. Usage is strongly discouraged whenever possible.

Bit 8 ($0100) fMostCornrnonPalette
Have Twilight II take a tally of which lines use which palette, and set all the SCBs to use the most commonly
used palette.

Bit9 ($0200) fReqUsableScree
The module requires a ''usable" screen. (See discussion below.)

Bit 10 ($0400) fLeavesUsableScreen
The module leaves a ''usable" screen.

Bit 11 ($0800) fLeavesCycleScreen
The module leaves a screen which can be color cycled by the next module, where applicable. Note: this is not
implemented in Twilight II v 1.1, but you should be ready for it

Bit12 ($1000) fPrernatureExit
The module always exits before movePtr becomes true, when in random mode (e.g. Short Out, Color by
Color.) This feature is not implemented in Twilight ll v 1.1 but is present to make switching modules after so
many minutes much better in the future!

The minimum Twilight II version word of T2ModuleFlags is BCD, in the same format as toolbox version
words in Apple IIgs technote 100. For example, $0101 represents Twilight II version 1.0.1. If the version of
Twilight II is not great enough, Twilight ll will display the module as dimmed. If the version of the
rT2ModuleFlags resource is incorrect (i.e. not $01) or the Twilight II module has been inactivated (given an
auxtype of $C004), then the module will not be displayed at all.

In addition, it should be noted that modules are free to put whatever else they want in their resource forks. Please
put your setup controls in your resource fork if your module supports setup. Please use our defined resource
types (i.e. rT2ModuleWord, rByteArray, etc.), where applicable, for consistency. Also, we suggest that you
put as much of your data in resources as possible, for three reasons: 1) your module's data doesn't have to stay
around in memory all the time, using valuable memory space (instead it can be loaded in LoadSetupT2, which can
be called right before your module is called for super-memory-efficiency); 2) the advanced user can use a resource
editor to modify your module data if necessary, and 3) resources should be used whenever and wherever possible
because of the flexibility they offer.

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 3

Twilight II Module Messages

Twilight ll modules are now sent "messages" to perform certain actions in the same way the Control Panel NDA
sends action event codes to CDevs. (As a side effect, this makes modules a lot easier to write in "C" for you can
just define them as CDevs for practical purposes- see the Orca/C sample module source for more information!)
Currently there are seven defined action types. The only one modules are required to support is BlankT2.
Support of the rest is optional, but recommended.

At any time, your module may call MMStartUp to get the ID it is running under. The ID returned from
MMStart Up is what the data fork of the module was loaded with using the System Loader, so it is advisable to
first create a few new modified auxiD's to allocate all your memory with. Create as many auxiD's as you wish,
and do whatever you want with them, just don't delete the id returned from MMStartUp and don't use it to allocate
extra memory.

When the data fork of a module is called and sent an action message, the stack is set up like this:

Inputs:
!previous contents!
1-----------------1
1 T2Result I Long - Result space.
1-----------------1
I T2Message I Word - Action to perform.
1-----------------1
I T2datal I Long - Action specific input.
1-----------------1
I T2data2 I Long - Action specific input.
1-----------------1
I rtlAddr I 3 bytes - Return address.
1-----------------1

The module must return control to Twilight II with the stack arranged as follows:

Outputs:
!previous contents!
1-----------------1
I T2Result I Long - Action specific output.
1-----------------1
I rtlAddr I 3 bytes - Return address.
1-----------------1

Message 0: MakeT2

This message is sent only to modules which support setup, as indicated by their T2ModuleFlags resource. A
MakeT2 message is sent when the module's menu item is selected from the setup popup control in the setup
window. It tells the module to create its setup-specific controls in the setup window. When the user selects the
popup menu item for setup for your module, Twilight ll loads the data fork of your module into memory (again if
necessary) and calls MakeT2. It is the module's responsibility to position its controls below the setup window's
psuedo-info bar.

Your module must return in T2Result (lo) the highest control ID (!Wtresource ID!) of the controls it just
created. This means that you must start numbering your control IDs with 1, going consecutively through the
highest ID that must be returned in T2Resul t (lo). This highest ID number will be used by Twilight ll when it
is time to erase and dispose of the controls.

If you need to load the last saved setup configuration values of your module so you can set up your controls to
reflect the current status of these flags, you must save the current resource file, set the current resource file to

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 4

T2Data2 (lo), read in or create, if necessary, your configuration flag resources, then restore the original resource
file (probably that of your own module's resource fork.) Again, see our sample source if this sounds confusing.
(You can create your config resources froms scratch at either MakeT2 or SaveT2; we recommend making new
setup resources- if they don't already exist- during SaveT2.) You must create your setup resources the first
time the user configures your module after installation or after deleting Twilight. Setup. The resource search
path should be preset by Twilight II to: «Your Module>>, Twilight. II, ControlPanel, Sys .Resources.

Modules are free to use TextEdit controls in their setup dialogs without any problems or extra effort. Try to take
care that the setup window may enlarge in the future when designing your control layout.

Just for your information, the horizontal line control always present in the setup window has QuickDraw n ...
coordinates of (20,0,21,350).

All direct page space is reserved for use by Twilight II. The following parameters are passed on the stack:

T2Message = MakeT2 ($0000.)
T2Datal =Window pointer of the setup modeless window.
T2Data2 (hi)= reserved (do oot modify!)
T2Data2 (lo) =Resource file ID of the opened resource fork of Twilight. Setup.
T2Result (hi)= reserved (do ootmodify!)
T2Result (lo) =Highest control ID of module specific setup controls.

Control IDs in the range $07FEFFEO through $07FEFFFF are currently reserved for use by the CDev and should
not be used by modules.

Message 1: SaveT2

A SaveT2 message is passed to your module when your module is presently being configured, and the user
clicks on the "update" control in the psuedo-info bar. Saving new configuration data was implemented in this
fasion so that the user can choose not to save the new settings if a mistake is made somewhere. Typically in your
SaveT2 handler you will first set the current resource file to Twilight. Setup, and then you will load in any
existing configuration resources specific to your module and modify them to reflect the user's new changes. Don't
forget to handle a first -case scenereo - the resources may not be there if your module was never configured
before, so you might have to create them and then store the new values the user just chose. (See
Twilight. Setup section below.) All parameters are reserved, but ones passed with MakeT2 are still valid for
use. All direct page space is also reserved for use by Twilight II.

T2Message = SaveT2 ($0001.)
T2Datal =reserved (do not modify!)
T2Data2 =reserved (do not modify!)
T2Result =reserved (do oot modify!)

Message 2: BlankT2

BlankT2 is the one message modules are required to support. Modules are provided with a direct page of their
own to be used in any manner. Do whatever you need to animate the screen! Note that the resource search path is
undefined, and usually should be left that way (i.e. in most cases you should not be loading any resources in the
BlankT2 handler!) Please see the special section "Special Notes on When Resources Are and Should Be
Loaded" under "Setup Resources" for if your module has a valid reason to be loading data resources from your
own resource fork during BlankT2 and not during LoadSetupT2.

Remember, that if you set the appropriate T2ModuleFlags bits, the screen might be already faded out when
your BlankT2 handler gets control. Twilight II will automatically preserve and restore the user's original border

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 5

color for you and set the current color to black. Twilight IT will also always open a new GrafPort for your use.
T2ModuleFlags bits fGrafPort320 and fGrafPort640 will govern any special properties of this port
(See description above.) Otherwise you will just get whatever default port QuickDraw ll gave to Twilight ll when
it called OpenPort.

To ease the creation of modules with high speed advanced animation effects that require the shadow screen to
work their magic, Twilight ll does all the work in securing shadow memory for all modules. Twilight ll indicates
that it was able to secure the shadowing screen for your module's use by turning on shadowing before calling your
module. (So if you're drawing to the SHR screen directly, be sure to check if shadowing is on. If it is, you must
use bank $01 SHR, else you must use bank $E 1 SHR. If you're using QuickDraw ll exclusively, you don't have
to worry about checking which bank to use.) When shadowing is on and your BlankT2 handler is called,
$012000-A(XX) is guaranteed to be the same as $E12000-AOOO.

What if your module absolutely requires shadowing to function properly? This is okay- it is a tradeoff. What
you should do in such a situation is first to check if shadowing is already on. If it is, do your stuff- modify any
parts of $012000-AOOO and $E12000-AOOO and feel free to turn shadowing off and on if you need to for your
animation Gust make sure that the value of the SHADOW softswitch is the same when your module exits BlankT2
as when it was first called.) However, if shadowing is not available (indicated by SHR shadowing turned off
when your module gets control) you should exit back with an error string that the internal DrawString error
module can show to the user.

Twilight ll will also make sure the Font Manager is started before calling BlankT2.

The state of the system is as follows:

fun= A default new port, or a specific mode (see above.)
Pei1/background color and pattern =Undefined, but the pen is hidden for you.
Resource file path= Undefined. (That set by the bottom application.)
Resource Am>lication =Undefined except when the Twilight II main window is open and your module is called
by the user moving to a blank now corner. In this case, the resource application is guaranteed to be that of the
Control Panel NDA. (This supports modules storing resources that have to be loaded during blank in their own
resource fork, using T2ShareMemory so they can be blanked while being configured.) .
Module's resource fork= Not open and module not logged into Resource Manager, except if the module's setup
window is open at the same time of blank.
Color tables= Table $0 set to default QuickDraw ll palette, tables $1 through $F set to black ($000) if £FadeOut
was set. If fGrafPort320 or £Gra£Port640 is set then table $0 will be setto the default color table.
Otherwise palettes are those set by the bottom application.
Current pixel data= Screen memory initialized to $00 if £FadeOut was set Otherwise set to that of the bottom
application.
Current screen mode= 320 (all SCBs ANDed with $7F) if £Gra£Port320 is set, 640 (all SCBs ORed with
$80) if fGrafPort640 is set, otherwise set to that of the bottom application.
Border color= Black.

T2Message = BlankT2 ($0002.)
T2Da tal =pointer to boolean movement flag (movePtr) indicating whether the module should return to T2 or
not The following are currently defined values for movePtr; all other values are reserved.

$0 0 0 0 No movement has occurred; module should remain active unless returning to T2 with an
error string.

$ 0 0 0 1 The user has interacted with the computer, your module should now return
normally to T2.

$2-FFFE Reserved.
$FFFF The module must exit because a specified number of minutes have elapsed in Random Mode,

and Twilight ll is moving onto the next selected random module. Note: this is not
implemented in Twilight ll v 1.1 but you would be wise to make your modules aware of it
for the future.

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 6

As soon as movePtr turns non-zero, the module is required to return to T2. (If Caps Lock ''Lock" is on, and
caps lock is down, your module can keep running forever, but movePtr also will not turn to 1 until caps lock is
released.) If you don't return to T2 at least within 2 seconds after movePtr has become 1, then be sure you test
your module well, as it has the potential to wreck havoc on Twilight II.
T2Da ta2 (hi)= reserved (do not modify!)
T2Data2 (lo) =bits defined as follows:

bmiBlankNow $0001 Module is being called from "blank now"
bmiCycleColors $0002 The previous module left a screen which can be color cycled. Note:
this is not implemented in Twilight II vl.1, but you should be ready for it.

T2Resul t (lo 3 bytes)= handle to error c-string. If no errors occurred, pass NIL. Otherwise pass a handle
(allocated using your memory ID) containing an error string that you'd like T2 to inform the user about. The error
string must be a c-string. Up to one carriage return ($0D) may be embedded. This handle is passed to the internal
DrawString error module- experiment with appropriate lengths of the string. Keep it as short as possible.
T2Result =optional flag byte (BlankFlag). Bits defined as follows (bmr =blank message result), with the
rest reserved:

bmrNextModule $01000000
Skip to the next module. Only set this if you want to exit your module without movePtr becoming true. Also
make sure that more than one module has been selected. If movePtr has become true or only one module is
selected or you are being called from "blank now", do not set this.

bmrFadein $02000000
The SHR screen should be faded in after all. You don't have to set this bit if it is already set in the module flags
word.

bmrLeavesUsableScreen$04000000
The module has left a "usable" screen after all. You don't have to set this bit if it is already set in the module
flags word. .

bmrLeavesCycleScreen $08000000 .
The module has left a screen which can be color cycled after all. You don't have to set this bit if it is already set
m the module flags word. Note: this is not implemented in Twilight II v 1.1, but you should be ready for it.

Message 3: LoadSetupT2

LoadSetupT2 tells your module to load any configuration or data resources. Remember that you are loading
resources under someone else's memory ID, so be sure to DetachResource your resources immediately after
LoadResource, and then to SetHandleiD your detached resources to T2Data2 (hi) so that they will stay
around long enough for you to use them in your BlankT2 handler. (Alternatively, you may also save the existing
resource application, ResourceStartup (MMStartUp), load your resources, ResourceShutDown, and
restore the old resource application. You still must detach your resources, but you don't have to bother with
SetHandleiD.) -

Twilight II sets up the resource search path so that Twilight. Setup is on top. If you currently need to load
data resources contained in your own resource fork, do an LGetPathname2 to find out your pathname (use
f il eN urn = $0001), and open (and close) your resource fork when appropriate by yourself. Be sure to save and
restore the previous current resource file. C code that does this follows. ID is your module's memory ID, as
returned from MMStartUp.

word MyResFile, OldResFile;

OldResFile=GetCurResourceFile();
MyResFile=OpenResourceFile(l /*read only*/, NULL, LGetPathname2(ID, OxOOOl));
CloseResourceFile(MyResFile);
SetCurResourceFile(OldResFile);

In most cases, all resources should be loaded at this time! This includes both configuration resources of yours in
the Twilight. Setup file, and static (unchanging) data resources of yours in your own resource fork. If your
module has sound effects, then it would be a good idea to store them as rSound resources and also load them at

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 7

this time. Keep track of your allocated memory handles yourself; be sure to dispose of them in the
UnloadSetupT2 handler. It is guaranteed that after LoadSetupT2 is called, your module will remain in
memory, in the same location, through the time UnloadSetupT2 is called.

Please see the special section "Special Notes on When Resources Are and Should Be Loaded" under "Setup
Resources" for when LoadSet upT2 will get called, and if you should indeed load all your data resources (from
your own resource fork) during it, or if your module qualifies as a special case that should load data resources
during BlankT2. It probably doesn't, but read and be sure.

T2Message = LoadSetupT2 ($0003.)
T2Datal =reserved (do not modify!)
T2Data2 (hi)= reserved (do not modify!)
T2Data2 (lo) =flag word. Presently only bit 0 is defined (lmi =load message input):

lmiOverrideSound $0001
1 =override sound, 0 = sound okay. If sound is overriden, you should not load any of your sounds into
memory (to conserve memory.)

T2Result =bits defined as follows (lmr =load message result):
lmrReqUsableScreen $0001

Requires usable screen after all. You don't have to set this bit if it is already set in your module flags word.
lmrFadeOut $0002

Fade out after all. You don't have to set this bit if it is already set in your module flags word.
lmrMostCommonPalette $00M

Do most common palette (mcp) after all. You don't have to set this bit if it's already set in your module flags
word.

lmrPrematureExit $0008
While not implemented in Twilight II v 1.1, this bit is very important and you must support it This bit must
be set if your module plans to exit before movePt r becomes true. For instance, Mountains, Plasma, String
Art, etc. should set this bit only when their "Quit After One" option is selected. You don't have to set this bit
if it's already set in your module flags word (as it is for modules like Short Out and Color by Color, which
always exit early in random mode.)

Message 4: UnloadSetupT2

UnloadSetupT2 gives you the chance to dispose of any old memory handles that you previously had in
memory for the entire time your module was selected. When you receive an UnloadSet upT2 message, your
module is about to be unloaded and disposed of, so make sure you don't leave any handles behind!

The resource search path is undefined.

T2Message = UnloadSetupT2 ($00M.)
T2Datal =reserved (do notmodify!)
T2Data2 (hi)= reserved (do not modify!)
T2Data2 (lo) =reserved (do not modify!)
T2Result =reserved (do not modify!)

Message 5: KiliT2

Kill T2 gives you the chance to dispose of any memory handles that you previously had in memory during the
time your module was being configured by the user. When you receive an Kill T2 message, your module is
about to be unloaded and disposed of, so make sure you don't leave any handles behind!

The resource search path will be set to:« Your Module>>, Twilight. Setup, Twilight. II,
ControlPanel,Sys.Resources.

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 8

T2Message = KillT2 ($0005.)
T2Datal =reserved (do not modify!)
T 2Da ta2 = reserved (do not modify!)
T2Result =reserved (do not modify!)

Message 6: HitT2

Hit T 2 gives you the chance to react immediately when the user clicks in any one of the controls in the setup
window. It also gives Twilight II the chance to enable the save (called update in Twilight II v 1.0) button.

T2Message = HitT2 ($0006.)
T2Datal =handle to control in question.
T2Da ta2 = ID of the control.
T2Result (hi)= reserved (must currently return $0000.)
T2Result (lo) =boolean result value indicating if save control should be enabled based on the control hit.

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 9

Setup Resources

Twilight ll also features a new way of saving module preferences. Each module can have its own custom
preferences and the preferences from all modules can all exist simultaneously! In addition, the new preference
manager was fully designed with multi-user AppleShare networks in mind as well. Preferences are now stored in
Twilight. Setup, saved in the modules folder which exists in the same directory as the CDev when the CDev
runs its BootCDev message handler.

Twilight ll first checks for the Twi 1 i ght . Set up ftle on boot. If the setup ftle can't be found, it is created and
initialized with some default resource values. ~·

Storage

Predefined resource type assigment for Twilight. Setup file:

Description
Reserved for internal CDev use. (Internal integer flags.)
Available for any word-sized setup resources. (Unsigned word.)

Resource Type
rT2ExtSetupl ($1001)
rT2ModuleWord ($1002)
rT2String ($1010)
rByteArray ($1012)

Reserved to save pathnames of currently selected modules. (Psuedo-WStrings.)
Available for any size setup resources. (unsigned char array.)

If your module supports user-conftgurable setup (as defmed by the fsetup bit of the T2ModuleFlags word,)
then it must store the user's currently selected module options in the Twilight. Setup file at the appropriate
time. All custom resource types other than those above are reserved. All existing resource IDs are also reserved.
This means that your module may use any resource IDs in any of the above resource types or any of the Apple
defined resource types that is not already taken when your module receives a SaveT2 message. If your module

· needs to store information that is suited by a predefmed Apple resource type, then use the Apple type. For
instance, YouDrawit! and Movie Theater store the pathname of their currently selected files as rWString
resources. If your module needs to store any word-sized configuration resources, then please use the
rT2ModuleF lags resource type. If none of the above resource types or the Apple defined resource types suits
your use, than please contact us and we will assign a new custom resource type that all modules will be able to
take advantage of. It is imperative that you use resource names to keep track of your configuration resources.
Load and save them by name, not by ID! When creating a new resource from scratch, use
UniqueResourceiD and then SetResourceName. The new resource name System 6 Resource Manager
calls make this pretty easy.

Special Notes on When Resources Are and Should Be Loaded

LoadSetupT2 is not always called on boot, and UnloadSetupT2 is not always called right before your
module is about to be shut down and disposed. The new logic governing when each of these messages is called
depends on whether the boot disk is a SCSI hard disk or not. If the boot disk is not a SCSI hard disk,
LoadSetupT2 will be called during boot, and UnloadSetupT2 will be called only before your module is
about to be shut down and disposed (i.e. when Twilight ll has been purged, or when the user has selected a new
module.) If the boot disk is a SCSI hard disk, LoadSetupT2 will be called when it is time to blank, right before
calling BlankT2, and UnloadSetupT2 will be called right after your BlankT2 routine. This has the
advantage of saving precious memory, while still making users without hard drives pretty happy. However, there
are cases where this logic doesn't work the best it could. For these cases, two new bits of T2ModuleFlags have
been defined: fLoadSetupBoot, and fLoadSetupBlank. You should use these bits in the situation where
you think the internal logic described above isn't best for your module. For instance, the Tiler module only needs
to load six bytes of configuration resources. Since this is very minimal, it keeps them in memory all the time the
module is loaded, by setting fLoadSetupBoot. The YouDrawit module, on the other hand, loads the active
animation template file in LoadSetupT2. This file can use anywhere from $7000 to $9AOO bytes of memory,

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 10

so it is not wise to make it stay in memory all the time under any situation. As such, the ftle is only loaded right
before blanking, by setting fLoadSetupBlank.

It should be noted that when your module is called as a result of the user clicking the "blank now" button,
Twilight ll forces your setup to be called at blank (obviously.)

Likewise, there also are cases where it may be unwise for your module to load all its data resources from its
resource fork at LoadSetupT2 time. Say, for instance, you have a module that displays a random rPString
from your resource fork. And say you have 1000 pString resources in your resource fork, but only several
random ones will be used each time your module is called. It would be a waste to load in all 1000 when you're
only going to use several random ones that change each time your module is called. In rare cases like this, I
suggest you load the few resources you need in your BlankT2 handler (and dispose of them before returning.)
Note this process is not encouraged except in rare cases like the one above. For this reason, Twilight II does not
have things all nice and spiffy for you to load your resources at BlankT2 time. You must do all the dirty work.
This isn't too much of a big deal- all you really have to do is:

OldRezFile = GetCurResourceFile
ResourceStartup(MyiD)
RezFileiD = OpenResourceFile(LGetPathname2)
load your resources _
blank your stuff until MovePtr = TRUE -·
release/dispose your resources -·
CloseResourceFile(RezFileiD)
ResourceShutDown
SetCurResourceFile(oldFile)
return to Twilight II.

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 11

Miscellaneous Notes

Using Sound in Modules

Several guidelines have been established for modules using digitized sound effects played through the GS's
Ensoniq sound chip. By following these, sound can be implemented with a minimal amount of effort, and in a
consistent fashion that the user can control and understand. The following points comprise the first recommended
way for using sound effects:

1. Make sure you have an option allowing the user to turn the sound effects off. This is important, even if your
module has no other setup options. Preferably this option should allow the user to change the sound volume as
well. For instance, have a control where the volume can be changed from 0 to 15. At zero, there are no sound
effects. Users want a feature like this!
2. Note the newly defined T2Data2 (lo) flag word passed to your module at LoadSet upT2 time. If bit 0 of this
flag is on, then you also should not play any sound effects. This is the global sound shutoff boolean flag, and you
must honor it. ·
3. Keep your sounds stored as rSound resources. These can be loaded and detached at LoadSet upT2 time and
disposed of at UnloadSet upT2. If the user has requested not to have sound effects, or if the global sound
shutoff flag is true, then you should not waste memory with loading in your sound resources from disk. You
might want to consider allowing use of rSound resources in the Sounds folder, but that currently involves a lot of
extra coding work!
4. You can use Apple's Sound control panel to play the sounds. In C:

SendRequest(6 /* srqPlaySoundSample */, stopAfterOne, NULL, TheRSoundHandle, NULL);

If you need to play several sounds at once or require greater flexibility than the above method offers, you may play
the sounds yourself using the Sound Manager.· Twilight II has several requests that make this easier for you.
When calling Twilight II, send your request to "DYA-Twilight II-". We also have sample source code available
that illustrates this method. Three Twilight II IPC requests were designed for sound:

$9005-t2StartupTools

Note: if any errors occur during startup, no tools will be started and no memory will be allocated.

datain (lo) Integer bit flags specifying which tools to start up.
The following bits currently defined in Twilight II v 1.1 ($0 11 0)

bit 0 =start SANE
bit 1 = start Sound Manager

data In (hi) Word UseriD to allocate tool direct page memory with.
dataOut Pointer to the following 4-byte structure:

+00 (word)- receive count (used by Tool Locator)
+02 (word) - any errors incurred in the startup

$9006-t2ShutdownTools

Any tools started by t2Start upTools should be shutdown by this procedure. Their direct page memory will
also be disposed.

datain Oo) Integer bit flags specifying which tools to shut down.
The following bits currently defined in T2 v1.1 ($0110)

bit 0 = shutdown SANE
bit 1 = shutdown Sound Manager

datain (hi) Reserved (Pass zero)
dataOut Reserved.

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 12

$ 900D- t2CalcFreq0ff set

This request will take a relP itch value from an rSound header and convert it into a corresponding
freqOffset to be used with the Sound Manager.

datain (lo)
datain (hi)
data Out

relPitch value from rSoundheader.
Reserved (Pass zero).
Pointer to the following 4-byte structure:

+00 (word)- received count (used by Tool Locator)
+02 (word)- freqOffset

These three request should make handling your own sound effects with the Sound Manager much easier. Just
remember to not use sound if the Sound Manager is already in use when you gain control!

Using Fonts in Modules

Twilight II now starts up the Font Manager before calling BlankT2. This means it is okay for your module to
make Font Manager calls such as InstallFont and SetPurgeStat. However, you should be aware that
some users may not have their system disk online at all times, and if you call InstallFont with the boot disk
offline, the Font Manager will probably not be very complying. Be sure to react accordingly. In the future,
Twilight II may start up the Font Manager at LoadSetupT2 and UnloadSetupT2 time to be more friendly to
users with limited volumes, but at this time such action is not supported.

''Usable" Screens

A usable screen is defined as a screen which contains enough content to make it worth modifying by another
module. For instance, Tiler leaves the screen in a state which Color by Color can work with. Short Out does not
leave a usable screen, so if the screen is shorted out (to black) and another module is run directly afterniard that
requires a usable screen (like Tiler), then Twilight II will restore the screen before running Tiler.

If your module always requires or always leaves a usable screen, set the appropriate bit in the module flag word.
If your module only sometimes requires or leaves a usable screen (such as snow, due to the clear screen option),
then you can return this information at LoadSetupT2 and/or BlankT2 time.

We request that you follow the above guidelines so Random Mode can be enhanced now and even more in the
future.

Low Memory Mode and What it Means to You

Low memory mode saves users 32k of memory. LMM affects one situation: when $012000-AOOO has been
allocated (in a handle exactly $8000 bytes in size) but SHR shadowing is off when it is time to blank the screen.
Twilight II will not allocate shadowing in this situation ifLMM is on, because both banks $01 and $El of SHR
must be preserved.

LMM will be significantly changed in the future (and made more or less automatic.)

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 73

"Quit After One:" When You Need It, and How to Implement It

Some modules (e.g. Mountains, Plasma, String Art, Headlines, etc.) have options to quit to the next module in
random mode after they have generated a one screen display. This type of option is to tie users over until a definite
"In Random Mode, Exchange Modules After X Minutes" is implemented for the future.

If you would like to implement this option, make sure you set the appropriate usable screen bits for your modules.
Then code your module like this:

1) Call t2Getinfo (request $9004 to "DYA-Twilight II-", stopAfterOne,.f-sendToName)
around the start of your module's BlankT2 message to find the count selected modules word. Use a ...
Data In of NIL and a DataOut such as the following. (You also can liSe the DataOut supplied in our T2. H
header file, but this one here is more efficient for reading only this one word.) ,

Word recvCount;
Word start offset = $0002; I* copy from this byte of the buffer *I
Word end offset = $0004; I* to this byte of the buffer *I
Word count_selected_modules; I* f of selected modules *I

2) When you think you should return to T2 to quit to the next module, you may only return with
bmrNextModule in T2Result ifbmiBlankNow (passed as an input at BlankT2 time) is clear and
count_ selected_ modules is equal to more than one.

Restoring or Saving the Original Screen

Twilight II has (obviously) saved the contents of the screen before your module was run. What if your module
needs to restore the original screen? Or what if your module needs to reference the original screen? (For instance,
Meltdown takes the original screen and reverses it after a few minutes; a few minutes later it restores the original
screen back. Dissolve needs a copy of the original screen to reference in order to do its effect.) In these cases,
you can make the Twilight ll t2GetBuffers IPC request ($900B).

You may not dispose of the handles this call returns, nor may you modify the pixel data! Ignore the auxiliary
buffer handle (which is normally not used), and the palette buffer handle (which is used only for background
blanking.) Also, please note that this call returns the original screen. The original screen is not necessarily what
was on screen before your module was called! For instance, in random mode, your module can be called after
another one. Thus on screen is the previous module's display and in the buffer is the original user's screen. React
and plan accordingly.

Here is C source code defining the structure returned by t2GetBuffers. DataOut should be set to a pointer
to this structure. Da tarn should be set to NIL.

#define t2GetBuffers Ox900Bu

I* DataOut structure for t2GetBuffers *I
typedef struct getBuffersOut

} ;

Word recvCount;
void ** shr main bufferH;
void ** shr-aux bufferH;
void ** palette=bufferH;

I* handle to main SHR buffer *I
I* handle to aux SHR buffer *I
I* handle to palette buffer *I

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 14

Conclusion

Well, that wasn't so bad, was it? The format is quite complex, but after you've dealt with it for a bit, it makes much
more sense. Be sure to make full use of the sample source code we provide; it can help a lot! And if you run into
any problems, remember that we can be reached on America Online (in our company support board available from
the AUf utilities forum and AGS graphics and sound forum) and GEnie (in A2Pro category 29.) We'd be happy
to help you write your modules! Your feedback is also welcome for extensions and modifications to the fonnat,
and to this documentation!

Coming in July: the Twilight II IPC documentation, listing all the details on the Twilight II
inter-process-communication routines you can use in your programs and modules!

You also can contact us by phone (203.375.0837) and by USMail:
DigiSoft Innovations
P.O. Box 380
Trumbull, Cf 06611-0380
Attn: Twilight II Tech Support

Or by electronic mail at the addresses listed in the Twilight II manual (e.g. digisoft@aol.com, etc.)

June 14, 1993- 2:23PM Twilight II Generation 2 Module Format ERS 15

That's a very good question. If you're still not convinced that Twilight II will protect your valuable monitor,
dazzle your friends and family, and not interfere with your work, listen to what some existing owners have said.

"it's fantastic, it's amazint> it's totally awesome!"

Andy Kress
North Kingstown, Rl

((Got Twilight II last week-really nice! Thanks
for a great product. "

Bob Fischer
Jesup, GA

((Congratulations on developing a great piece of
software ... Good work and I look forward to
your foture projects. "

Sam King
Aurora, Ontario, CANADA

(YiniFireworks is really elegant, and Fireworks
glorious ... The documentation and flexibility
of the program is impressiver

Kirk Hollingsworth
New York, NY

((Works like a charm."

Donald Mcintosh
Lexington, MA

'(Twilight II v 1.1 is absolutely astounding ... I
am very impressed and proud to own it! Keep
up your good work. "

Evan Trent
Norwich, vr

Order your copy today, and find out what everyone else is raving about!

P.O. Box 380
Trumbull. CT 06611

Phone 203.375.0837

