
Optimizing 65xxx Assembly Language Code
By Albert Neuburger

1991 A2-Central Summer Conference

1. Use ALL registers.

2. Use, whenever possible, values that are already in the
registers.

3. Use processor flags to their fullest extent.

4. Avoid using the stack to temporarl ly hold values <unless
your trying to save memory space>, it's faster to do:

Ida adrs <or DP>
sta adrs Cor DP>

then to push on and pop off values from the stack.

5. Make effective use of Direct Page addresses for things
like storing and retrieving values <it 1 s faster then using
absolute addressing>

6. Avoid, whenever possible, doing RMW <Read, Modify, Write)
operations.

ex. asl adrs <or DP>
ex. inc adrs <or DP>

7. To avoid RMW operations use the registers, especially the
index registers <registers x andy), effectively. Do this
by holding often used values, which would normally be
modified by an RMW operation, in the index registers. Why?

because lt 1 S faster to do something like:

txa
asl <immediate addressing>
tax

which takes 6 cycles,

then to do:

asl adrs <or DP>

which, under the best conditions, stilI takes 7 cycles.

8. If appropriate, use the 1 blt 1 instruction to
non-destructively check the setting of bits in the
accumulator.

9. Keep in mind, one of the fastest ways to check whether a
value in a register is negative or zero is to simply
transfer <ex. tax, txa, tay, tya, txy, tyx> it to another
register. <this is assuming you have a free register to
transfer to)

10. Also keep ln mind:

Jmp adrs <3 cycles>

is 1 cycle faster then,

brl displacement (4 cycles>

but is not relocatable like /brl r, therefore (obviously)
use 1 jmp adrs/ only ln code which you know won/t/can't be
relocated.

11. Try to put repetitive code in areas where most of the
routines using the code converge, this has the potential to
save lots of space in an application.

12. <an extension of 11> For conditional branches, put code
which wil I appear after the branch, whether it/s taken or
not, before the actual branch instruction, but ONLY if the
code doesn/t effect the processor flag being used for the
conditional branch.

The not-so-nice way: Ida adrs
sec
sbc number
bne branch
sta adrs

branch sta adrs

The incredibly-wonderful-stupendous way:

branch

Ida adrs
sec
sbc number
sta adrs
bne branch

13. Make large pieces of repetitive code into subroutines,
NOT into macros.

14. OFFICIAL DISCLAIMER: I personally do not recommend using
the following information, but include it because I feel one
should try to know as much about programming ones machine as
possible.

In desperate cases, where one is NOT using the Stack and/or
the direct page, the stack pointer and/or the DP register
can be used as an additional register. Their main use would
probably be for avoiding RMW operations Cas discussed in 6
and 7). But there are a number of significant drawbacks to
using them:

a. interrupts must be off.
b. the original settlng(s) for the register<s) must

be saved so they can be restored later on.
c. absolutely NO code must use the stack and/or

direct page since you have no idea where it may
be located from one point ln your code to the

next.
d. you lose some very powerful useful addressing

modes

FINAL POINT: When to save space and when to go for speed ...

Very often a person can take one approach to a problem
and save a few bytes in memory or go with another which is
slightly longer but runs a few cycles faster.

There is no cule to help decide when to use what
approach. Generally, the particular appl !cation and some
common sense should help one with that decision So always
plan things out, don/t just start writing a 50k program <or
any other for that matter) the moment it comes to
you ... you/1 1 probably end up with a giant kludge, tons of
bugs, and a massive headache, other then that you should be
all right Have Fun!!!

