
•

1992 Apple IIGS Graphics
and Sound College
Presented by Bill Heineman and Nate Trost

Handout #1 (Nate Trost)

Super Hi-Res Screen Layout

The Apple IIGS Super High-Res Graphics
screen operates in two modes of resolution:
320x200 and 640x200. In the 320x200
resolution each pixel is represented by 4 bits
(thus there are two pixels per byte), in
640x200 each pixel is represented by 2 bits (4
pixels per byte). The size of the graphic

•

screen is 32,000 bytes and is followed by 200
scan line control bytes (one for each SHR
Une), 56 bytes of unused space, and 512 bytes
of palette information (for a total of 32,768
bytes or 32K). The SHR graphics memory is
located in memory bank SEt from memory
locations $2000 to $9FFF.

Super HI-Res Memory
Palette Data--> --t9FFF• -

SCB Data ------> --t9Eee•
--$90001

-::;-_c:• ~- _ -- 1f£;';:;1 :-~· . _. _·

Pixel Data ------>

The Super Hi-Res Pixels
The pixel data for the Super Hi- Res screen is
arranged in a linear fashion from $2000 to
$9CFF in memory bank $E1. Each line on the
Super Hi -Res screen is represented by 160 bytes
in memory. In 320 mode each of the 320 pixels
are 4 bits (totalling 160 bytes), in 640 mode
each of 640 pixels are 2 bits (again, totalling 160

bytes.) Line 0 on the SHR screen starts at
$2000, Line 1 starts 160 bytes after Line 0, and
so on, until Line 199, which ends at $9CFF.
Each pixel value designates which color value
will be used from the palettes located at $9EOO
S9FFF.

Scan Line Control Bytes (SCBs)

Each of the 200 vertical lines on the Super Hi
Res screen has a single byte allocated to it.
These bytes are known as Scan Une Control
Bytes, or SCBs. SCBs regulate whether a line is
in 320 or 640 mode, whether fill mode is

Scan Line Control Byte

Paoe 3

operating for the line (320 mode only), if an
interrupt is generated when the line is
refreshed, and which of the 16 palettes will be
used to represent the colors available to the
pixels on the line.

1
1--ll..r..;t:::::::::::::::"RR~e~se;t.rved; do not modify

.._ ____ Fill Mode, 1=on, O=off
.._ ______ 1 =Generate interrupt, O=don't

.... -------1=640 mode, 0=320 mode

Palettes

There are 16 palettes (also known as color
tables) that occupy the 512 byte space from
$9EOO to $9FFF. Each palette has 16 entries (of
two bytes each) that specify a color. The
highest four bits are reserved, and the Red,
Green, and Blue values are represented by
four bits each. This allows 16 possible values
for each of the three primary colors for a total

a e e I

t9FC9 PAlette 1141
t9FA9 Palette 1131 f1C
$9F80 PAlette 1121 $1A
t9F60 PAlette 1111 $18
t9F40 PAlette 1101 $16
$9F20 Palette 19• $14
$9F00 Palette 18• $12
t9EE0 PAlette 17• $10
t9EC0 Palette 16• tE
$9EA0 Palette 15• tC
t9E80 Palette 14• $A
t9E68 PAlette 13• $8
t9E40 PAlette 12• $6

0 • $4

[' e e I • $2

>

of 4096 possible colors (16x16x16=4096). The
value of each pixel is an offset into the palette
being used tor its line. For example, if a pixel
in 320 mode had a value of 4, the color of the
pixel would depend on what the fifth color
entry in the line's palette was set to (for
example, if it was SFOO the pixel would be a
bright red, $0FO bright green, $00F, blue ...).

o or •
Color 114111
Color 113111
Color 112111
Color 111•
Color 119•
Color 19•
Color 18•

17•
16•
15•
14•
13•
12•
11•

iif!ITJiltJVIIII['•e• t u[? q 12ffi;.1
. Red (0-15) Blue (0-15)

Green (0- t 5)
Reserved, set to 0

Colors in 640 Mode

The way colors and palettes operate in 640
mode is different from 320 mode. In 640 mode
each pixel is represented by only two bits,
allowing 4 possible values. In order to access
all 16 possible entries in the palette, each of
the 4 pixels in a 640 mode pixel byte access a
different set of 4 colors in the 16 color palette.

Bit
t ' 'I Pixel (640) t

Pixel Value Palette Color
3lll 0lll $011

t• fl•

2• $2•

3• $3•

4• 0• $4•

1• -~· z• $6•

J• $7•

Dithering

When in 640 mode, it is possible to achieve
the effect of having 16 true colors. Because of
the small width of the pixels, it is possible to
alternate pixels of different colors in close
proximity in order to fool the eye into

Fill Mode

I!

Color- Fill mode is available in 320 mode only.
By setting bit 5 of a line's SCB, fiJI mode is
enabled for that line. When fill mode is
active, a pixel value of 0 automatically takes
on the color of the last pixel value ($1-SF)
used before it on the right, so that:
190499000~006049306000002000000•

wtth fill mode off would become:
111444444~~~6644336666662222222•

with till mode on. Note that the first pixel
value of a line must not be 0 (when fill mode
IS on I, or a random color will result.

Page 4

The first pixel of the byte uses colors 8-11, the
second pixel, colors 12-15, third pixel, colors 0-
3 and fourth pixel colors 4-7. For example,
pixel 47 on line 20 would be the fourth pixel in
its byte. If this pixel has a value of 1, it would
use the 5th color entry from the palette
assigned to its line.

~4 I~ ,1~ II }.~.,
Pixel Value Palette Color

1• 0• $8•

t• ·~· 2• fA•

3• •e•
2• e• •c•

1• tO•

2• SE•

3• $F•

perceiving a solid color that is a mix of the
two alternating colors. For example,
alternating blue and white gives a lighter
shade of blue while blue and black give a
darker shade.

Turning SHR on and off
Turning on:
call QuickDraw II routine GratOn
ldal SE1~82~• ora t~l eeeeee•
st~l fr:l 92~•

Turning off:
call QuickDraw II routine GraiOtf

!~i~ i~t~III!tl•

· Quagmirenc Animation Editor File Format
Preliminary Format Description, revision 2
Copyright 0 1992 Nate Trost, All Rights Reserved
Do not duplicate or distribute, Quagmire format subject to change prior to final release.

+000 5 bytes I D
'BWANI' -- ASCII ID. string (hi-bit clear)

+005 2 bytes VERSION
file format version number, hi byte major, low byte minor, e.g. $0100=1.13

+007 1 byte TYPE
type of animation data:

255-2: reserved 1: 640 mode SHR 0: 320 mode SHR
+008 1 byte COMPRESSION

reserved
+009 t byte PIXELSIZE

size of each pixel in bits
+010 WORD FLAGS

bits 15-2:reserved
bit 1: if set. all frames same height/width
bit 0: H set, all frames have mask data following image data

+012 WORD FRAMES
number of frames in document

+014 LONG FIRSTOFF
offset from beginning of file to first frame record

+018 LONG TABLEOFF
offset from beginning of file to table of frame record offsets

+022 LONG COLORTABLESIZE
size of color table in bytes

Paoe 5

+026 See Above COLOR TABLE color table for document (for SHR, 32 byte in palette format)
FRAME RECORDS
+000 LONG NEXTOFF

offset from beginning of frame record to next frame record, nil if last
frame

+004 WORD XSIZE
XStze in words (number of pixels across/4)

+006 WORD YSIZE
YSize in pixels (height)

+008 WORD FLAG
Bits 15-1: reserved Bit 0: mask data included after image data

+OOA LONG FRAMESIZEC
If frame compressed, size of compressed frame data

+OOE LONG FRAMESIZE
Size of uncompressed frame data

+012 8bytes USER
8 byte reserved for whatever

+OlA FRAMEDATA ...
There is a table of frame offsets located in the document ... an offset to this table is located in
the frame header, the table is made up of LONG values for each frame starting with the
first... these values contain the offset from the beginning of the file to the beginning of the
frame's record.

Drawing
The act of drawing an object to the screen is actually a
very simple matter. AD that drawing involves is the
copying of pixel data from its buffer to the Super Hi
Res screen memory. Before we can draw the shape, we
have to know where to draw it.

Calculating SHR Addresses

We need a way to calculate a starting address from a
pair of X/Y screen coordinates so we know where to
start drawing. Here is the fonnula:

320 Mode /640 Mode w I dithering: (Y • #$AO) +
(X 1 S2) + #S2000 =starting address in SHR memoty
640 Mode : (Y • #SAO) + (X I $4) + #S2000 = starting
address in SHR memory

• NOTES, each scan line is SAO (160 bytes) across and
there are 2 pixels per byte when in 320 mode or 640 w I
dithering and 4 pixels per byte when in 640 mode
proper

Now can we can figure the address, let's look at the
work involved in drawing this simple shape:

OOOOFFOOOO
OOOFITFOOO
OOFFFFFFOO
OOF0770FOO
OOF7007FOO
OOOFFFFOOO
OOOOFFOOOO

This shape is 7 pixels high and 5 bytes across (we11
assume 320 mode which makes the width 10 pixels
across) for a total size of 35 bytes. Unfortunately, we
just can't loop and copy 35 bytes to the SHR screen at
our starting address. Why not? Because each tine of
our image is only 5 bytes across, each S HR line is 160
bytes across, we would end up with a long horizontal
line that looks nothing like our image. What is the
solution? We have to draw each Hne of the image to
successive lines in SHR memory. This means we copy
the 5 bytes to SHR memoty on the starting line, then
we add 160 bytes to our SHR address to point it to the
next line, and we add 5 bytes to our pointer to our
shape and then copy the next 5 bytes_and so on and so
forth until we have completed the job. That's an there
is to drawin~

Paoe 6 .

Masking•

While the method we described above works, it has
one noticable limitationMMthere is no way to screen
out unwanted pixels in the source image, everything
is copied. Also, there is no way to make parts of the ·
image 'see-through', any existing 'background' pixel
data is ovetWritten. In order to screen out unwanted
pixels and allow the background to be presetved
where these pixels are located, we need to use a
technique called masking.
In order to know which pixels to draw and which to
ignore, we need a seperate pixel image called a mask.
In our mask, SF pixels represent areas where we won't "
copy a pixel and wiD preserve the background pixel
and SO pixels represent areas where we wm copy the
ptxel. Our mask for our image would look Hke this:

IMAGE MASK

OOOOITOOOO
OOOFFFFOOO
OOE'E EE EE 00
OOF0770FOO
OOF7007FOO
OOOFFFFOOO
OOOOFFOOOO

ITFFOOFFFF
FFFOOOOFFF
FFOOOOOOFF
FFOFOOFOFF
FFOOFFOOFF
FFFOOOOFFF
FFFFOOFFFF

In order to draw this image using the mask, we:
1 LOAD existing pixel data in SHR memory

2 AND this data with the corresponding mask data

3 0 RAthe result with the cotTesponding image data

4 STORE the result back to SHR memory

Here is what the process looks like going through
drawing a Hne:

LOAD existing data: 7788777444
AND with mask: FFFFOOFFFF
RESULT================7788007444
ORA with image: OOOOFFOOOO
RESULT================7788FF7444
STORE back to memory!

'

'Erasing
The other critical step in animating in 1mage
is ERAS IN G. The shape that was drawn, in
most cases, must be erased before the next
frame is drawn. Erasing can mean either
simply zeroing (or another value) over the
drawn image on the SHR screen (usually done
only if there is no background that needs to be
preserved), or restoring the background data
that was overwritten when the shape was
drawn. Writing a routine to zero a block of
memory is easy, restoring the background is
slightly more complex.

There are two basic ways to restore the
background. The first is to copy the
background data before it is overwritten
WHILE IN THE DRAWING loop. The data is
copied to a buffer of identical size of the shape
being drawn. To restore the background, the
data is simply copied back to the screen from
the buffer at the exact location the drawing
took place. The second method involves
having another 32K buffer that acts as a
background save buffer, where a clean copy of
the background is always kept. Data is copied
from the background save buffer to the SHR
screen to restore the data overwritten by the
image.

Both techniques have advantages and
disadvantages. The Background Save Buffer
CBSB) method is faster in most cases, but needs
another 32K, and can be awkward with
anything other than a static, unchanging,
background. The drawing buffer approach is
slower because of the time needed to copy the
data into the buffer (this is not needed with
the BSB), but it a bit more flexible about non
statJc backgrounds.

Order

Depending on the drawing/ erasing method
being used, the order in which shapes are
drawn and erased can be important. If you are
using the Background Save Buffer to restore
the background, it doesn't make any difference
what order you draw I erase the shapes.

Pave 7

However, if you are using the local buffer
method, you MUST erase the shapes in the
opposite order you drew them, e.g.: Draw
Circle, Draw Square, Draw Triangle Erase
Triangle, Erase Square, Erase Circle.

The reason for this reverse erasure order is
that each of the shapes has their own buffer
with their own copy of the background. If the
square and the circle overlap, the square will
copy the background to its buffer ... which will
contain part of the circle image. The circle
contains a perfectly clean copy since it was
drawn first. If the circle were erased first and
then the square, the square's buffer would
bring back some the the circle image that
should have been erased.

Shadowing
In order to avoid the annoying effect of
flicker when animating (especially with large
and compex objects), a technique called
shadowing can be brought to use. By clearing
bit 3 of the SHADOW register at SC035,
shadowing for the SHR memory is enabled.
What this means is that the memory at
$E1 I 2000-9FFF now has a counterpart at
S01/2000-9FFF. When shadowing is on, any
data written to $01/2000-9 FFF is automatically
copied to $E1/2000-9FFF.

The procedure of drawing using the shadowed
screen is as follows:

ERASE (if needed) previous shape on $01
screen (with shadowing off)

DRAW new shape on $01 screen (shadowing
off)

TURN on shadowing and copy affected data
on $01 screen back onto self

By using this process (drawing and erasing
with shadowing off), it is impossible to see
the shape when half-drawn or half-erased.
When drawn I erased to the bank S01 screen
with shadowing off, the data is not copied to
the $e1 screen and therefore does not appear
on the display. By turning shadowing on and
recopying (loading and storing back onto
itself) the data. you can quickly display the
changes all at once.

Stack Updates

The fastest way to update the SHR screen is to
map the stack and direct page onto the bank
$01 screen and use an instruction cal1ed PEL
By setting bits 5 and 4 in the State register at
SC068, the stack and direct page are mapped to
bank $01 instead of bank $00. PEl takes the
two byte value found at a pair of direct page
locations and pushes them on the stack, e.g.
PEl $10 would take the value of direct page
locations $10 and $11 and push them on the
stack. By setting up the stack and having a

Page a.

long list of PEl's with th~ direct page set
accordingly, it is possible to push data onto
itself In only 7 cycles per word (6 tf the direct
page is aligned on a page boundary). NOTE,
interrupts MUST be disabled when the stack
and direct page are mapped to bank $01!

Paint Works Animations
PaintWorks animation tiles (tiletype SC2)
provide a simple method for saving full
screen animations. The file format (never
offtciaiiy specified) is as follows:

+$0000-$7FFF - 32K screen image of
the first frame

+$8000-$8003 - Length of animation
data blook

+$8004-$8007 - Delay time per frame
in 60th/second ticks

+$8008-EOF - Animation data block

The animation data block is made up of
records that tell us how to modify each screen
image for the next frame. There is a 4 byte
value at the beginning that is an offset to the
starting records, however, some animations
do not have a valid value in this block so you
should just skip over it to get to the first
record. Each record four bytes, the first two
bytes is an offset into a display screen, addtflg
$2000 gives the address in SHR memory. The
second word is the pixel data to store at the
address specified. If the offset into SHR
memory is zero, it means that this is the end
of the frame.

