|[-Vision
Streaming video on an Apple ||

Kris Kennaway
KansasFest 2019

Demo

//gs pretending to be //e

l.e. 1 MHz, 64k, extended 80-column card
Standard Apple][speaker, not //gs sound

Audio out with amplified speaker for presentation
Uthernet Il - streaming from my laptop

For convenience, loading player from CFFA3000
o but not relying on these

Should work on everything going back to original 64KB Apple][
o but untested (yet!)

Demo

Double Hi-Res

Credits: https://www.youtube.com/watch?v=rXONcuozpvw

5-bit audio from a 1-bit speaker

e Apple][speaker knows how to tick (move in/out), once
e Old technique going back to ~1990
e Pulse Width Modulation: precisely control the duty cycle of 1-bit speaker cone

by allowing it to move during a fraction of each time interval
o e.g. 14 cycles out of every 73.

e By varying this duty cycle you can modulate a constant "carrier wave"
(1TMHz/73 = 14.3KHz in this case) with lower frequencies, and simulate higher

audio bit depth.
o e.g. with 32=2° possible duty cycles at 73 cycles this gives 5-bit audio at 14.3KHz.

e This frequency is lower than ideal (Michael Mahon's dac522 player uses a

non-audible 22KHz carrier) but not too bad on the built-in speaker
o atleastto my41-yearold ears ;)

Audio playback - in code

TICK = $C030 ; tick speaker
; wait 54 cycles

; tick speaker 12 cycles apart \[o]
and pad to 73 cycles (14.3KHz) \[0]>
op_tick 12: NOP
STA TICK ; 4 cycles 5 [...24 more NOPs...]
; wait 12 cycles @D:
NOP ; 2 cycles JMP somewhere ; 3 cycles
NOP ; 2
NOP ; 2
NOP ; 2

STA TICK ; 4 cycles

Audio playback - in code

e ..look at all those wasted CPU cycleso O

e In a RAM-based audio player this is where you'd have to
deal with stepping through memory, figuring out where to
jump next, etc.

e Probably willing to trade extra CPU cycles for more
efficient use of memory.

e dacd22 gets about 4 seconds of playback from 48KB

Uthernet |l ethernet card

e | bought an Uthernet Il

o now what can | do with it?
e \W5100 ethernet controller

e Auto-incrementing memory pointer into 8KB of onboard
TCP read socket buffer

o every time you read the same Apple Il I/O location it steps through the
8KB of internal memory on the W5100

e Fastest possible way to get data into 6502, short of DMA

From audio to video

e The audio decoding is the most timing-critical part
o hang off this chassis

e Let'sfill in those wasted cycles by reading bytes from the
TCP socket

o Ignore TCP stream management for now

Step 1: Self-modify to work out what to do next

; tick speaker 12 cycles apart and pad
to 73 cycles

op_tick

12:

STA TICK ; 4 cycles
; tick again 12 cycles later

NOP

NOP ;
NOP ;
NOP ;

STA

; 2 cycles

@D:

; wait 54 cycles

NOP

NOP

NOP

5 [...18 more NOPs]

; ask TCP stream where to go next
LDA TCP_DATA; 4 cycles

STA @D+2 ; 4 cycles

LDA TCP_DATA ; 4 cycles

STA @D+1 ; 4 cycles

JMP somewhere ; address self-modified

Step 2: Video is about storing bytes to memory

; tick speaker 12 cycles apart and pad
to 73 cycles
op_tick 12:

STA TICK ; 4 cycles

; tick again 12 cycles later

; ask TCP stream which byte value

; to store

LDA TCP_DATA ; screen content value
in A register

NOP ; 2

NOP ; 2

STA TICK ; 4

@D:

; wait 54 cycles

NOP

NOP

NOP

5 [...18 more NOPs]

; ask TCP stream where to go next
LDA TCP_DATA ; 4 cycles

STA @D+2 ; 4 cycles

LDA TCP_DATA ; 4 cycles

STA @D+1 ; 4 cycles

JMP somewhere ; 3

Step 3: Images have redundancy, and errors are OK

op_tick 12 page 20:
STA TICK ; 4 cycles
LDA TCP_DATA ; load content byte
; store same content byte at 4
; offsets within memory page $20

; load first page offset into Y
LDY TCP_DATA

STA TICK ; 4

STA $2000,Y ; store content byte
LDY TCP_DATA ; load second offset
STA $2000,Y ; store content byte
LDY TCP_DATA ; load third offset
STA $2000,Y ; store content byte

@D:

LDY TCP_DATA ; load fourth offset
STA $2000,Y ; store content byte

; 6 cycles left over
NOP
NOP
NOP
; ask TCP stream where to go next
LDA TCP_DATA ; 4 cycles
STA @D+2 ; 4 cycles
LDA TCP_DATA ; 4 cycles
STA @D+1 ; 4 cycles

JMP somewhere ; 3

Summary: Audio + video player opcodes

We have enough spare cycles to store a single arbitrary byte value at 4
arbitrary offsets on page $20, while ticking the speaker 73 cycles apart

What about other HiRes screen 1 pages ($21..$3F)? Just copy this 31 times
Supporting other speaker duty cycles 4, 6, ..., 66 - same basic idea (although

fiddly to rearrange things to tick at exactly the right cycle counts)

o and for 2 of them | could only get them off-by-one cycle
Somewhat magically, these 32*32=1024 player opcode variants (barely) fit in
64K main memory together with ProDOS

o few KB to spare in odd corners

o 6 leftover cycles are necessary to allow rearrangements, and to reduce memory by JMP’ing to
common code sequences.

Is it enough?

Can store 4 screen bytes every 73 cycles

~57000 byte stores/second

40*192=7680 bytes on hires screen

so about 7.5 complete screen refreshes/second
should be (barely) enough for reasonable frame rates,
assuming we can manage the errors.

Enough details, let's watch another video

(HiRes, 24 FPS)

Credits: https://www.youtube.com/watch?v=9INZ Rnr7Jc

https://www.youtube.com/watch?v=9lNZ_Rnr7Jc

Video player - recap

e TCP byte stream is steering CPU to spray a sequence of
bytes at 4 offsets on a memory page within HiRes screen
page 1

e ...while also steering speaker cone to produce 5-bit audio.

e No conditional 6502 opcodes so far, playback is
completely deterministic

o also only uses 2 of 3 6502 registers, convenient to maintain X=0

e But we can only read 8KB of data before we fall off of the
end of the TCP socket buffer

Slow path

e Need to periodically manage TCP socket buffer

e \Want to leave some free space so socket buffer can refill in the background
while we read from it

e 2KB is good compromise

e Server can cause client to perform TCP buffer management when exactly

2KB has been read from socket buffer
o move socket read pointer, ACK TCP stream, check that at least 2KB still in socket buffer
e Need to keep ticking speaker every 34+39 cycles during slow path to
minimize audio artifacts
o 34 cycles is the “baseline” speaker duty cycle

e Slow path fits in 2x73 cycles i.e. 2 "neutral" audio frames every 292
o 0.7% noise/overhead

While we're In here

e \What about Double HiRes?

While we're in here

e \What about Double HiRes?
e Requires flipping a single soft-switch to steer writes between HiRes screen
pages in MAIN memory or AUX memory

While we're in here

e \What about Double HiRes?

e Requires flipping a single soft-switch to steer writes between HiRes screen
pages in MAIN memory or AUX memory

e Since that has a bit of overhead, we'd probably want to only flip back and
forth periodically

While we're in here

e \What about Double HiRes?

e Requires flipping a single soft-switch to steer writes between HiRes screen
pages in MAIN memory or AUX memory

e Since that has a bit of overhead, we'd probably want to only flip back and
forth periodically

e ..solet'sdoitin the slow path

While we're in here

e \What about Double HiRes?

e Requires flipping a single soft-switch to steer writes between HiRes screen
pages in MAIN memory or AUX memory

e Since that has a bit of overhead, we'd probably want to only flip back and
forth periodically

e ..solet'sdoitin the slow path

e read a TCP byte and self-modify to interpret this as a soft-switch address to
toggle.

Double Hi-Res support in 3 instructions

op_ack: ; slow-path - manage TCP buffers
HE
; allow flip-flopping the PAGE1l/PAGE2 soft switches to
; steer subsequent writes to MAIN/AUX screen memory
LDA TCP_DATA ; ask TCP stream which soft switch to flip
STA @D+1

@D:
STA $COFF ; flip the soft switch (low-byte is modified)

e By adding 3 instructions to the player loop (plus some initialization, and timing
fixups) we can support DHGR video playback.
e Gives some visual interlacing but reasonable quality at 2KB frame size

Now what?

e So now we have a player that is capable of playing a
(D)HGR video stream with multiplexed audio.

Now what?

e So now we have a player that is capable of playing a
(D)HGR video stream with multiplexed audio.
e How do we produce one?

Now what?

e So now we have a player that is capable of playing a
(D)HGR video stream with multiplexed audio.
e How do we produce one?

e How do Apple Il colour graphics work, anyway?

Now what?

e So now we have a player that is capable of playing a
(D)HGR video stream with multiplexed audio.

e How do we produce one?

e How do Apple Il colour graphics work, anyway?

e Let's see what Woz had to say...

Woz explains Apple |l colour graphics

(HiRes, 30 FPS)

Credits: https://www.youtube.com/watch?v=uCRIijF7Ixz|

https://www.youtube.com/watch?v=uCRijF7lxzI

Woz explains Apple |l colour graphics

(HiRes, 30 FPS)

Credits: https://www.youtube.com/watch?v=uCRIijF7Ixz|

(4 days without sleep, folks)

https://www.youtube.com/watch?v=uCRijF7lxzI

Crash course in Apple Il colour graphics

e signals from colour TVs go up and down, up and down
o at a certain speed

e 4 little 0-1 bits, circling around

e going up and down at a different time, then red would
become blue

e 16 patterns of 1's and 0’s, become different shades

Crash course in Apple Il colour graphics

e signals from colour TVs go up and down, up and down

o at a certain speed
4 little 0-1 bits, circling around

going up and down at a different time, then red would
become blue

16 patterns of 1's and 0’s, become different shades
(Come to my lightning talk tomorrow)

Video transcoder

Demultiplex input sequence of video frames and audio
stream
Downsample audio to 14.7KHz (=44.1KHz / 3) and

normalize to 5-bit range
o 2.8% slower playback at 14.3Khz but better downsampling quality

Bill Buckels’ BMP2DHR to turn video frame into "ground
truth” Apple Il memory representation
Compute colour artifact representation of memory frame

Video transcoder

Choose sequence of (content, page, offsets) to minimize

error between old and new image frame
o this is the main computational step

Multiplex audio and video into sequence of player
opcodes

Compile opcodes into byte stream tailored for particular
version of player, i.e. known memory addresses

Insert slow path opcodes every 2KB

Frame error minimization

Choose (content, page, 4 offsets) such that they
minimize the perceptual difference between current
screen content and target content

Priority order - resolve the largest differences first
Residual errors accumulate to next frame

Prioritizes large differences between frames

If we don'’t get to resolving fine detail this frame, we’ll be
more likely to next frame (if diff is still there)

Perceptual distance

e Some colours are perceptually more similar than others
o e.g.lower visual error introduced by substituting a nearby colour or leaving with “wrong” colour

e CIE2000 perceptual colour difference metric
e Compute strings of coloured pixels that are influenced by storing a given byte

e Damerau-Levenshtein edit distance between two such pixel strings
o measures how many pixel colour changes and transpositions are needed to turn one string
into the other
o i.e. also accounts for shifting groups of pixels left/right (less perceptual difference)
e Precompute edit distance between all possible source and target pairs
o I.e. taking into account the visual pixel colour changes introduced by storing all possible bytes
against all possible backgrounds.

e Python (NumPy), ~5x-10x slower than real-time

Future work: video quality

e BMP2DHR + encoding errors gives an approximation of an approximation of

the true image
o Also BMP2DHR is completely unaware of artifact colours?

e Should get better results by directly optimizing against original image frame

e Can optimize directly for the unusual constraints of video player (4 offset
stores of the same content byte)

e Take artifact colours into account

e Better control of spatial error diffusion

Caveat: likely more computationally expensive

Future work: audio, player

Audio quality
e with better signal processing should be possible to reduce audio artifacts
Player

e Player currently hard-codes IP address (should be ~easy to fix) and Uthernet
Il slot (harder to fix - need to patch thousands of memory addresses)

e \Would be nice to have a file selector Ul
o i.e. bidirectional TCP communication with server to enumerate and select available files

e Playback seek controls would require real-time encoding
o i.e. rewriting in higher-performance language

https://qgithub.com/KrisKennaway/ii-vision

kris.kennaway@gmail.com

https://github.com/KrisKennaway/ii-vision

