Lego Programming for the Apple /I
Evan Koblentz @ Kansasfest 2017

Childhood

® Lego fan ever since | can remember

* Learned LOGO (only turtle graphics) on C-64 in 5" grade
* Learned Applesoft BASIC on][+ in 6" grade

* Got a /le Enhanced for my bar mitzvah in 7" grade

® Special memory: told parents my wish that year, no luck :(

* Got out of computers after middle school

Adulthood

* Got into vintage computing around 2002

* Linux for modern computing, Platinum for vintage

* Co-founded MARCH in 2004

* Co-founded Vintage Computer Federation Inc. in 2015
* VCF is a 501(c)(3); VCForum; VCF East/West/more; etc.

* (Still) shun social interaction to play with Lego :)

Enough background! Let’s discuss
Lego Programming for the Apple //

* In 2016 VCF/Mid-Atlantic chapter member Ben G. loaned us NIB
kit for HOPE & World Maker Faire

* |t was the best medicine!!!
* Rabbit hole of 1980s technology led me to here :)

*® Disclaimer: | don’t know much tech, but maybe you’ll dig it

All about the kit

* Lego 9700 Technic Control Center - 1986
® Card, interface box, motors + sensors + lights

®* Choose your weapon: Apple Il (with Applesoft firmware card),
Apple][+, Apple //e, Apple ligs, etc.

But not Apple //c! Thus: Laser 128

R

L wJW"W‘$t¢"ETi
{La] CC -
R

PR RN SR X

g z 4 I = ey s V' N H
R L) R e e I LS o _..‘.:..r._: H
e e R B LA I I

_:1- __:-' A _.__'1':.--'-'1..-_;E -._:1:‘-_‘,*- ﬁ.-.-lll""'-r '-r_';,:.r'lr-'l'l!_r L '“‘a.’;_ =
% N i T * e o o N G M - il VIR
g ;._ -l_""‘: 1 “-_‘L ' s = - :..-"‘"I"-.-_ - 'hﬁ(‘l e .= :’; -
¥ R N g b Tl i o

Ty ol . -'.*.'_El- b] - - . 'r'-.-"'u . .- 2 H-l::.-l"‘l" L,
- Sl % et T T, e oy -

Commercial interruption ;) [ESSESEEEEE=—ms

.....

My friend Jon Chapman I e —— o
made the replica card el O
using a prototype of his ' 022208 8.
new Apple Il board. Henry
has them here at Kfest or

visit www.Glitchwrks.com

i T S R

COLOR REF
™

Q3

®1

USER 1

$0
DEVICE SELECT
D7
D6
D5

D4

D3
D2

D1
DO
+12V

LEGO Robotics TC Logo

Lego 9767

Transfers the programming data

and the sensor data
to the processor bus

when accessing the memory address

for the 9767 card

NIy

1.Provides an integrated peripheral expansion
2.0ffers 2x 8-bit I/O ports

3.Contains 2x 16-bit Timers

4.Interrupt control

Programmable
ABORT signal
same as STOP button

FRONT

SLOT 6522 VIA*

Versatile

Interface

C) Adapter
26 2s|+5V 7418245
27 24| DMA OUT Port A
289 23| INT OUT Port bit.0
ggg ng tn)gn\,(k 8bit Control A)
1210} A ; ; Data
a1 20| /0 STROBE _ : Data 8bit Data Logic A TO
320 P19 :YIWNC R0~ Skie Baka Bus Beagases LEGO 9750
33 18 :
ME ;" A15 Transceiver Data port
350 16| A4 ia
36 Pp15(A13 +5V : v
s | il iy Port B Ribbon Cable
38 P3| A11 bits 0-7
sod p12| A10
00 p11| A9 s Port
419 prof A8 Interrupt signal TIMER#1 B 8bit Data
420 Do A7 =T} Data
43 P8 A6 "o < TIMERHD Register
4] B7 | A5 6 Outputs
4500 D6 | A4 2
46 Ps5 | A3 Inputs
a7 P4 | A2
48] P3| A1 74L874
490 P2 | A0
soc 1 |70 SELECT $0 »| Clock
Divider

Timing functions available via the
expanded Lego TC Logo commands

and other languages,

eg. Apple Pascal

Provides the timing clock
to allow the 9767 card

to latch the data

from your code and

from the sensors

* More detailed information
can be found in the datasheet

DAN.ROGANTI 2017

‘als.
90

....U
TOOOD000000

DO0OO GOO000C. 360 000

DOCOOT 00 G606 .0 3500

333300

0‘.

1 O
0000000000000 0G0 0 Q00

QOOO000000000000F A0 If, (6, &

00
ogOQOOUGO

Q0000
00
S8

T e TR
-l ' - Ly
Wd 1000 600
000,000 1006t 060

SO0 LO0O 100L 000
COO0000000000660

OO000000UN00L000

COOOOOOOOOOOOOOOOOOO00933933335

TS D

EREE LR

T

r
[T

e

ADRESS SWITCH

I1 J

T e e ————
e e e r——
B VT PR I e

b @

»
)
N
%
<
e
2
*
-

LEGO Robotics TC Logo

Test port
Bi-Directional addt'l Output Port
Sensor output to allow testing
Input Ports Output Ports O to 5 motors or lamps manually

LEGO 9750 /7\/\/6\

A;;‘(//,Powerjack

STOP Button
allows you to manually
abort the robot functions

Data Port
Ribbon cable
connects here

Internal View

Motor
H-Bridge
Motor Output I 1 Port
|]
Driver ' 0
Data Port Opto \\\\\,
Isolator Interface I 1 m w_
’ 1
Data Bit# 0[] o / &
From : Bi-Directional
Apple I Data Bit# 1[} - output Port 3 modes of operation
a

MOTION MOTION* MOTION

N
1 ;
N ;
[Output Data] /, < \: @ m ' w_ #1 c*(?,q FW]tiRVS
t Cw
N\\ ///":

Provides electrical isolation

to avoid any damage to —— iy
: : - nterface e
electronics inside Degial. dabs B6 *opposite direction

the Apple computer the Motor H-Dridge Electronics interface is done by flipping

to operate the DC Motor the polarity on
the motor cable

Operational
Amplifiers

Sensor Input Port

Opto

I Isolator Data Port
LIMIT :
: {1 pata Bit# 0
examples of SWITCH : iy N
. aEEla
robot sensors I e 5
1

\

/

\ [Input Data]
X

IEE .||E 8

&
= A g
OPTO Converts the Analog signal
SENSOR Port + from the sensors

~

into digital data DAN.ROGANTI 2017

LEGO Robotics TC Logo

Lego 9767

111 o
Slot 1 to 7

Bi-Directional
Option

aNs.
o™

OPTO LIMIT CCW CwW FWD/RVS FWD/RVS
SENSOR SWITCH MOTION* MOTION MOTION MOTION

DAN.ROGANTI 2017
-

All about the kit

® Lego Technic Control Center - 1986
* Card, interface box, motors + sensors + lights

® Choose your weapon: Apple Il (with Applesoft firmware card),
Apple][+, Apple //e, Apple ligs, etc.

* Apple Il + LOGO or IBM + BASIC

All about the kit

® Lego Technic Control Center — 1986
* Card, interface box, motors + sensors + lights

® Choose your weapon: Apple Il (with Applesoft firmware card),
Apple][+, Apple //e, Apple ligs, etc.

* Apple Il + LOGO or IBM + BASIC

* Experiment 1: IBM (sort of) + BASIC = Fall

98950

9960 '----
9970 'INIT
9980 '----
9990
10000 P=925

16010 OUT P,21

10020 IF (INP(P) AND 63)=21 THEN OUT P,0 ELSE ERC=4 :

10030 RETURN
10040"
10950"
10960
10970 'BITON
10980"
10990
11000 IF NUM%>=0 AND NUM%<6 THEN 11020
11010 ERC=1: GOTO 20000

11020 OUT P, (INP(P) OR 2~NUM%)

11030 RETURN

11040"
11950"
11960"
11970 'BITOFF
11980"
11990"
12000 IF NUM%>=0 AND NUM%<6 THEN 12020
12010 ERC=1: GOTO 20000

12020 OUT P, (INP(P)AND 225-2~NUMs)
12030 RETURN

12040"

13000
13010
13020
13030

13040"
13950
13960
13970"
13980
13990"

14000
14010
14020
14030
14040

14050"
19960
19970
19980
19990

20000
20010
20020
20030
20040
20050

12950
12960
12970'
12980"
12990"

GOTO 20000

IF NUMs=6 OR NUMss=7 THEN 13020
ERC=2: GOTO 20000

Ys%=(INP(P) AND 2~NUM%)/ 2~NUMs
RETURN

IF TIM%>=0 THEN 14020
ERC3: GOTO 20000
QT=TIMER + TIM%

IF QT>TIMER THEN 14030
RETURN

CLS:COLOR 20,0 PRINT"PARAMETER ERROR":COLOR 7,0

IF ERC=1 THEN PRINT "OUTPUT BITS MUST BE BETWEEN @ AND 5" :END
IF ERC=2 THEN PRINT "INPUT BITS MUST BE & OR 7":END

IF ERC=3 THEN PRINT "WAIT TIME MUST BE POSITIVE":END

IF ERC=4 THEN PRINT
END|

"NO INTERFACE CARD IN COMPUTER AT ADDRESS 925"

:END

All about the kit

® Lego Technic Control Center — 1986
* Card, interface box, motors + sensors + lights

® Choose your weapon: Apple Il (with Applesoft firmware card),
Apple][+, Apple //e, Apple ligs, etc.

* Apple Il + LOGO or IBM + BASIC
* Experiment 1: IBM (sort of) + BASIC = Fall

* Experiment 2: Apple Il + (sort of) LOGO = Pass/Fall

1587
.’ ‘

MEEEREEEC)
MEEERLLE b=

---:_m
IEEERLEEQ

IREERIIEE
MERRRLLE .L

Iogo

Logo Compurer

Systems Int

0 Computer Systems Inc.

w3 T

LEGD 5‘95’?‘2!‘"‘!5 Inc.

o)

",
-..—:.

-.--sn
(T}

"0
-..u...

—...:.
o)

(L1}
.

(AL
... ...
1000

§
"W

All about the kit

* Lego Technic Control Center - 1987
® Card, interface box, motors + sensors + lights

®* Choose your weapon: Apple Il (with Applesoft firmware card),
Apple][+, Apple //e, Apple ligs, etc.

* Apple Il + LOGO or IBM + BASIC
* Experiment 1: IBM (sort of) + BASIC = Fall
* Experiment 2: Apple Il + (sort of) LOGO = Pass/Fall

* Experiment 3: Lego Lines (1987) = Apple Il + unsupported
BASIC = Inconclusive (capable but over-engineered)

These routines assume that the LEGO Slot Card has been installed
in slot 2.

Initialising
This routine must be called first to set up the LEGO Interface
correctly:

1600 REM INITIALISE INTERFACE
1601 $=5:L=49280+5+16

1682 POKE L+3,1

1683 POKE L+2,63

1684 POKE L+1,8

1685 POKE L ,8

1696 RETURN

Reading data

Below is a subroutine which will read data from the interface, and
store this in an array DB(..). This starts off as a single decimal value,
but will here be converted into elements DB(6) and DB(7), containing
1's or O's to represent on or off.

1288 REM INPUT DATA

1261 DB=PEEK(L) 'REM Read date

1262 DB(7)=(DB>127) :REM Convert binary data
1263 DB=DB-128+DB(7)

1264 DB (6)=(DB>63)

1285 RETURN

This next routine uses the above to test whether certain bits are
on or off, as required. It also allows you to set either test bit as any
value. To use it, you must first set the test bits T(7) and T(6)
(Temporary 7 and Temporary 6) to O, 1 or -1 {for any value). The
results will return as T=1 for true, and T=f for false.

1216 REM TEST INPUT BITS

1211 GOSUB 1208 ‘REM Read Input Bits

1212 T=(T(7)=DB(7) OR T(7)==1) AND (T (6)=DB(6) OR T(6)=-1)
1213 RETURN

For example, suppose you wish to test whether bit 7 was on, while
bit 6 could be any value. Then you could write:

T7=1:T6=-1:GOSUB 121A:IF T THEN (etc)

Sending data

Below is a subroutine which will send the data stored in an array
DB(..) to the interface. It is assumed that the elements DB(#)
through DB(5) contain 1's and O's to turn the bits on or off. These
data elements are then combined into a single decimal value to
be sent.

1168 REM OUTPUT DATA

1181 DB=# :REM Initialise data

1182 FOR I=A TO 5 :REM Convert binary data
1163 DB=DB+DB (I)*2A1

1104 NEXT I

1185 POKE L,DB ‘REM Send data to interface
1186 RETURN

The following routine will turn on all the bits specified. It has two
entry points. If you call it at the beginning (line 1110), you will
turn off all the other bits. If you call it at line 1115, you will leave
the other bits alone.

To use this routine, you must first set the required bits (T(#) to
T(5)) to 1.

1118 REM TURN ON SPECIFIC BITS

1111 FOR I=B TO 5 ‘REM Turn off all bits first
1112 DB(I)=8
1113 NEXT I :REM Falls through to next part

1115 FOR I=A TO 5

1116 DB(I)=DB(I) OR T(I) :REM Turn on required bits
1117 NEXT I

1118 GOSuB 1188 :REM Send data

1119 RETURN

For example. to turn on bits 3 and 4, without changing the other
bits, you could use the following line:

T(3)=1:T(4)=1:GOSUB 1115

To turn on bits 3 and 4, and the rest off, use:
T(3)=1:T(4)=1:6G0SUB 1118

Finally, the following routine will turn the desired bits on and off
for a set period of time, testing for the ESC key while waiting. Note
that, like LEGO Lines, it will not turn them off at the end of the
routine, The data for this routine must be set as in the above
routine at line 1115. In addition, the Output Time (0T) must be set
(to 1 decimal place).

1128 REM TIMED OUTPUT

1121 ES=8 :REM Not ESCaped (yet)
1122 FOR J=1 TO OT+25 :REM OT seconds

1123 GOSUB 1115 :REM Send data

1124 IF PEEK(49152)=155 THEN ES=1:G0TO 1129 :REM ESC
1125 NEXT J
1129 RETURN

Discovered “Lego Lines” and this:

“..designed to allow the
programmer to experiment further
with the Lego interface”

The Slot Card

The Apple LEGO Slot Card is based on a Mostek 6522 VIA chip.
The chip is communicated with through the 1/0 addresses,
calculated as follows:

L = 49280 + 5*16
where § is the slot number, and L the resulting address.

All input/output will come through the address L, although the next
three addresses are used during setup. A typical setup sequence
runs as follows:

POKE L+3,1
POKE L+2,63
POKE L+1,0
POKE L .8

This sets up the 6522 registers so that bits O-b are output bits, and
bits 6 and 7 are input bits. All 1/0 is then done through address L.

PEEK and POKE are our friends.

* Lesson taught to me by Dan Roganti: Each “port” is a bit in the
byte, and so...

* If it weighs the same as a duck...)

* All we have to do is POKE the address of the device with the
decimal total of the “ports” that we want to enable!

All about the kit
* Lego 9700 Technic Control Center - 1986

® Card, interface box, motors + sensors + lights

® Choose your weapon: Apple Il (with Applesoft firmware card),
Apple][+, Apple //e, Apple ligs, etc.

* Apple Il + LOGO or IBM + BASIC

* Experiment 1: IBM (sort of) + BASIC = Fall

* Experiment 2: Apple Il + (sort of) LOGO = Pass/Fall

* Experiment 3: Apple Il + unsupported BASIC = Inconclusive

* Experiment 4: Apple Il + hacked BASIC = Success!

10 REM THIS IS THE MAIN PROGRAM

20 GOSUB 1000: REM INITIALIZE LEGO INTERFACE

30 GOSUB 2000: REM DISPLAY INSTRUCTIONS

40 GOSUB 3000: REM NAVIGATION CONTROL

50 GOSUB 4000: REM FORKLIFT CONTROL

60 GOTO 40: REM LOOP OFERATION

70 END : REM JUST FOR GOOD GRAMMAR :)

1000 REM INIT LEGO CARD+INTERFACE

1010 REM SET SLOT AND MEMORY LOCATION

1020 S =7:L =49280 + S * 16

1030 REM PREPARE INTERFACE CHIPS

1040 POKE L + 3,1: POKE L + 2,63: POKE L + 1,0

1050 POKE L,0: REM CLEAR ALL PORTS

1060 RETURN : REM GO!

2000 REM DISPLAY INSTRUCTIONS

2010 HOME

2020 PRINT "Say hello to Leinad Legobot!"

2030 VTAB 3: PRINT "Use the joystick to make him go forward, backward, left, and right."
2040 VTAB 6: PRINT "Press top button to raise his forklift."
2050 VTAB 8: PRINT "Press left button to lower his forklift."
2060 VTAB 10: PRINT "Want to know how he works? Ask us!"

23?3 UTAB 12. PRINT B S S S+ 4SS SSd S LSS RLELEREEESEEELEEESE RS EEES S]]
2080 VTAB 14: PRINT "Lego design and construction by Evan."
2090 VTAB 16: PRINT "Software by Evan, Dan, and Paul."

2100 VTAB 18: PRINT "Interface card by Jonathan."

2110 VTAB 20: PRINT "Inspiration by Ben, kit donated by Eric."
2120 VTAB 22: PRINT "Learn more! www.vcfed.org"

2130 RETURN

3000
3010
3020
3030
3040
3050
3060
3070
3080

4000

4010
4020
4030
4040

4100
4110
4120
4130
4140

4200
4210
4220

4300
4310
4320

4400
4410
4420
4430

4500
4510
4520
4530

REM NAVIGATION

FB = PDL (1):LR = PDL (@):M = @: REM SET VARIABLES

IF FB < 75 THEN M = 5

IF FB > 180 THEN M = 10

IF LR < 75 THEN M = 9

IF LR = 180 THEN M = 6

POKE L,M: REM SEND COMMANDS

IF M =10 THEN CALL - 198: FOR W = 1 TO 500: NEXT W: REM BACKUP ALERT
RETURN

REM FORKLIFT

REM CHECK LIMIT SWITCHES

IF PEEK (L) = 64 THEN GOTO 4130: REM CHECK LOWER SWITCH, GO UP

IF PEEK (L) = 128 THEN GOTO 411@: REM CHECK UPPER SWITCH, GO DOWN
GOTO 4200: REM NO ACTIVE SWITCHES, DO ANYTHING

REM IF ACTIVE SWITCH, DO OPPOSITE

IF PEEK (49249) > 127 THEN POKE L,16: GOTO 4400: REM KEEP LOWERING
RETURN : REM NO BUTTON, EXIT

IF PEEK (49250) > 127 THEN POKE L,32: GOTO 4500: REM KEEP RAISING
RETURN : REM NO BUTTON, EXIT

REM NO ACTIVE SWITCH, CHECK BUTTON ©
IF PEEK (49249) > 127 THEN POKE L,16: GOTO 4400
REM NO BUTTON, FALL THROUGH

REM NO ACTIVE SWITCH, CHECK BUTTON 1
IF PEEK (49250) > 127 THEN POKE L,32: GOTO 4500: REM KEEP RAISING
RETURN : REM NO BUTTON, EXIT

REM LOOP ON DOWN MOTOR WHILE BUTTON ©@ AND INACTIVE LOWER SWITCH

IF PEEK (L) = 16 OR PEEK (L) = 144 THEN GOTO 4210: REM KEEP LOWERING

IF PEEK (L) = 80 THEN POKE L,®: RETURN : REM CHECK LOWER SWITCH, STOP, EXIT
POKE L,©®: RETURN : REM NOTHING HAPPENING, EXIT

REM LOOP ON UP MOTOR WHILE BUTTON 1 AND INACTIVE UPPER SWITCH

IF PEEK (L) = 32 OR PEEK (L) = 96 THEN GOTO 4310: REM KEEP RAISING

IF PEEK (L) = 160 THEN POKE L,®: RETURN : REM CHECK UPPER SWITCH, STOP, EXIT
POKE L,©®: RETURN : REM NOTHING HAPPENING, EXIT

ity

| - N
= I &
\ >
R W N >
g 3
= E) 'l
:
J ’ ¥ /
s N
? ’

= :
nn’.‘ \;,ﬁ/f ” !,A _\.ﬂ
a VA-kTEﬁ
= ol i
: ;
. .

.ﬁ_._-.HN_E,.,_n..__me..__M o

- o _-i.H. __._ng

% “ %, *, *
% 2
; - “ = ™) v ,.A!:
g 2 - -
= i | \u < iW..ﬂ ol o
W - 1|1 = ™ -
R p f
40 |

Pause to wave
to Steve Jobs,
wearing his
Lego turtleneck

and blue jeans

All about the kit

* Stronger than DOS, Windows, and OS/2 combined!

® But can it lift the WORLD’S LARGEST* Apple //e...?

* * by scale :)

More about the kit

* There is other experimental documentation for 6502 assembly
* Didn’t try it: “You know, for kids!” - The Hudsucker Proxy
* Other reason: time to confess, please don’t judge me :)

* |t's time to show but not much “tell”...

Programming in machine language

Although the LEGO Interface can be programmed in BASIC, some
of the LEGO Lines program is written in 6502 machine code, to
improve performance.

This section is intended only for experienced machine language
programmers who wish to write their own routines for controlling
the LEGO Interface. It only discusses how to initialise the
interface, and how to get data to and from it.

All hexadecimal values are denoted by the prefix $ (for example,
$2A), while binary values are denoted with the prefix % (for
example, 51811p8).

The address of the interface 1/0 port is given by the following:
LEGO EQU $CH8H+310+3

where § is the slot number of the LEGO Interface. Normally, where
the LEGO Interface is in slot 2, the address is given by:

LEGO EQU $CAAD

Initialisation
The correct initialisation sequence for the interface is as follows:

LEGO EQU $COAD
INIT LDA #1

STA $COA3
LDA #$3F
STA $COA2
LDA #B
STA $CHAL
STA $CAAD

RTS

Reading data

Reading the data is more complex. First, the data must be read
from the interface. Then the correct bits must be filtered out, if
necessary. Finally, the appropriate bits must be examined.

To read the current status of the output bits (to read which bits

are currently on):

STATUS LDA
AND
RTS

TEST JSR
STA
LDA
STA
T8 ROR
BCC
JSR
Tl INC
LDA
CMP
BNE
RTS

$COAD
#33F

STATUS
TEMP
#h
COUNT

Tl
ACT
COUNT
COUNT
#6

T8

:Filter out bits 7 & 6

:Rotate last bit into Carry
:No bit
:Else act on it

:Up to 67

Writing data

All data is written to address $C#AB. The six data bits on the
interface correspond exactly to the six data least significant bits
written to the address. So, for example, to turn on bits 1 and 3

only (and the rest off), it is necessary to load the accumulator with
binary 881618 ($6A).

Below is the routine to send the bits in the accumulator to the
interface:

SEND AND #$3F ‘Mask with $80111111

STA $COAD ‘to filter out bits 7 & 6
RTS

More software thoughts

* Still other experimental support for LOGO I

® 1988: LogoWriter Robotics (LCSI + Lego TC in one)

* Any language really: VB (been done!), Java, etc.

® Logo uses clock on the card; custom in others?

®* How to correlate robot movement with on-screen sprite

* Apple Il control of modern Mindstorms???

More hardware thoughts

® Supposedly there were C-64 and BBC Micro versions
* In theory Commodore 64 wouldn’t need a card

* Interface with set #8094 Plotter (part of 1989 Control Center
which uses push-button programming, unclear about software)

® Multiple interface boxes = do more stuff!

* Modern computers only need the parallel port

Next-to-last slide!

* Where to get your own kit? Ebay, Bricklink.com, more kit data at
Brickopedia, Brickowl, Technicopedia, individual blogs (Google is
your friend)... or DIY using online schematics (limited)!

® Online software (limited) / Online docs (very limited!)

® Alex L. — http://lukazi.blogspot.com/2014/07/lego-legos-first-
programmable-product.html

* Next step: Leinad* game development (* for my friend Dan)
* Child/parent Lego learning station @ VCF Museum

® Other thanks: Paul Hagstrom, Michael Mulhern (& many others
via Apple Il Enthusiasts Facebook group, VCForum, Applefritter)

® Just one more slide to go...

The Last Slide

® 2016 World (NYC) Maker Faire: Make Magazine Editor’s Choice
blue ribbon (for LOGO-programmed simple robotic car along
with Jeff Brace’s BASIC-powered Capsella/C-64 robot)

° (short)

®* One day | will learn 6502 assembly
* Come talk to me this week or email me: evan@vcfed.org
* |deas for programming (and Lego building!) welcome

* The end / Q&A

http://spectrum.ieee.org/robotics/diy/building-8bit-bots

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

