Apple II Colour Graphics

Kris Kennaway

Apple II Colour Graphics

- How colours work in Hi-Res and Double Hi-Res
 - \circ in 5 minutes
- Why all of those crazy rules?
 - \circ e.g. Violet pixel then Green pixel \rightarrow turns White?!
- ...and even when you follow them, don't get what you expect on the screen
 - fringing, interference

Dots

- Monochrome display
- Start with Double Hi-Res
 - It's simpler!
 - (said no-one else, ever)
- 560 horizontal dots per line
- High bit of screen byte is ignored
- 7 bits in memory map to 7 dots on screen
- Alternating bytes from AUX, MAIN memory
 - \circ 40 + 40 bytes gives 560 dot line

Double Hi-Res dots

Hi-Res dots

- Hi-Res has 280 horizontal resolution, right?
- Nope, also 560
 - but can't control every dot independently
- Bits 0..5 turn on 2 dots
- Bit 6 turns on **3 dots**
- Third dot may be overwritten by next byte
- Bit 7 (palette bit) shifts dots right by 1 position

Hi-Res dots

Hi-Res dots with palette shift

Artifact colours

- Think like a TV
- Scan each line, left to right
- Colour reference signal, 1 complete cycle in same time as displaying 4 dots
- Relative phase of dots determines colour
- Messy and analogue, but simple digital approximation
- Colour signal sees a sliding 4-bit window of dots

4-bit colour dot patterns

Hire	es Co	lours	;						
0	0	0	0		1	0	0	0	
0	0	0	1		1	0	0	1	
0	0	1	0		1	0	1	0	
0	0	1	1		1	0	1	1	
0	1	0	0		1	1	0	0	
0	1	0	1		1	1	0	1	
0	1	1	0		1	1	1	0	
0	1	1	1		1	1	1	1	

Doι	ıble H	lires	Colo	urs
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	

(lef	t-shif	fted)		
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Clock	0	1	2	3	0	1	2	3	0	1
Bits	0	0	0	0	1	1	0	0	0	0

Clock	0	1	2	3
Bits	0	0	0	0
Shifted	0	0	0	0

Clock	0	1	2	3	0	1	2	3	0	1
Bits	0	0	0	0	1	1	0	0	0	0

Clock	0	1	2	3	0
Bits		0	0	0	1
Shifted	1	0	0	0	

Clock	0	1	2	3	0	1	2	3	0	1
Bits	0	0	0	0	1	1	0	0	0	0

Clock	0	1	2	3	0	1
Bits			0	0	1	1
Shifted	1	1	0	0		

Clock	0	1	2	3	0	1	2	3	0	1
Bits	0	0	0	0	1	1	0	0	0	0

Clock	0	1	2	3	0	1	2
Bits				0	1	1	0
Shifted	1	1	0	0			

Clock	0	1	2	3	0	1	2	3	0	1
Bits	0	0	0	0	1	1	0	0	0	0

Clock	0	1	2	3	0	1	2	3
Bits					1	1	0	0
Shifted	1	1	0	0				

Clock	0	1	2	3	0	1	2	3	0	1
Bits	0	0	0	0	1	1	0	0	0	0

Clock	0	1	2	3	0	1	2	3	0
Bits						1	0	0	0
Shifted	0	1	0	0					

Clock	0	1	2	3	0	1	2	3	0	1
Bits	0	0	0	0	1	1	0	0	0	0

Clock	0	1	2	3	0	1	2	3	0	1
Bits							0	0	0	0
Shifted	0	0	0	0						

Oh look, we've discovered a Hi-Res Violet pixel (with fringing)

Interference

White

Clock	0	1	2	3	0	1	2	3	0	1	2	3
Bit	0	0	0	0	1	1	1	1	0	0	0	0
Colour										?	?	?

Clock	0	1	2	3	0	1	2	3	0	1	2	3
Bit	0	0	0	0	0	0	1	1	0	0	0	0
Colour										?	?	?

Fringing

Violet

+

Green

Clock	0	1	2	3	0	1	2	3	0	1	2	3
Bit	0	0	0	0	1	1	0	0	0	0	0	0
Colour										?	?	?

Everyone knows there are only 6 Hi-Res Colours

- unless you read Sather, "Understanding the Apple IIe"
- Remember the funny business with the palette bit shifting dots by 1 position, and how this extends/truncates dot patterns at the byte boundary?
- Can get 14 of 16 colours at byte boundaries
 - Plus the usual fringing

Hi-Res Yellow?!

Oc	ld of	et							Ev	en o	offse	et					
0	1 2		2	3	3 4		6	Ρ	Р		1	2	3	4	5	6	Ρ
0	0 0 0)	0	0	0	1	0		0	0	0	0	0	0	0	1
Bi	t Pos		4	4	5	5	6	6	6	0	0	1	1				
CI	Clock		2	3	0	1	2	3	0	1	2	3	0				
Bi	Bit		0	0	0	0	1	1	1	0	0	0	0				
Сс	Colour										?	?	?				