
Apple II Colour Graphics
Kris Kennaway

Apple II Colour Graphics

● How colours work in Hi-Res and Double Hi-Res
○ in 5 minutes

● Why all of those crazy rules?
○ e.g. Violet pixel then Green pixel → turns White?!

● ...and even when you follow them, don’t get what you
expect on the screen
○ fringing, interference

Dots

● Monochrome display
● Start with Double Hi-Res

○ It’s simpler!
■ (said no-one else, ever)

● 560 horizontal dots per line
● High bit of screen byte is ignored
● 7 bits in memory map to 7 dots on screen
● Alternating bytes from AUX, MAIN memory

○ 40 + 40 bytes gives 560 dot line

Double Hi-Res dots

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

..

Main (offset N)

7 6 5 4 3 2 1 0

Aux (offset N)

7 6 5 4 3 2 1 0

Aux (offset N+1)

7 6 5 4 3 2 1 0

Hi-Res dots

● Hi-Res has 280 horizontal resolution, right?
● Nope, also 560

○ but can’t control every dot independently
● Bits 0..5 turn on 2 dots
● Bit 6 turns on 3 dots
● Third dot may be overwritten by next byte
● Bit 7 (palette bit) shifts dots right by 1 position

Hi-Res dots

1 1 0 0 1 1 0 0 1 1 0 1 1 1

P 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

P 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hi-Res dots with palette shift

1 1 0 0 1 1 0 0 1 1 0 1 1 1

P 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0

P 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Artifact colours

● Think like a TV
● Scan each line, left to right
● Colour reference signal, 1 complete cycle in same time as

displaying 4 dots
● Relative phase of dots determines colour
● Messy and analogue, but simple digital approximation
● Colour signal sees a sliding 4-bit window of dots

4-bit colour dot patterns
Hires Colours

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Double Hires Colours

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

(left-shifted)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Example

Clock 0 1 2 3 0 1 2 3 0 1

Bits 0 0 0 0 1 1 0 0 0 0

Clock 0 1 2 3

Bits 0 0 0 0

Shifted 0 0 0 0

Colour

Example

Clock 0 1 2 3 0 1 2 3 0 1

Bits 0 0 0 0 1 1 0 0 0 0

Clock 0 1 2 3 0

Bits 0 0 0 1

Shifted 1 0 0 0

Colour

Example

Clock 0 1 2 3 0 1 2 3 0 1

Bits 0 0 0 0 1 1 0 0 0 0

Clock 0 1 2 3 0 1

Bits 0 0 1 1

Shifted 1 1 0 0

Example

Clock 0 1 2 3 0 1 2 3 0 1

Bits 0 0 0 0 1 1 0 0 0 0

Clock 0 1 2 3 0 1 2

Bits 0 1 1 0

Shifted 1 1 0 0

Example

Clock 0 1 2 3 0 1 2 3 0 1

Bits 0 0 0 0 1 1 0 0 0 0

Clock 0 1 2 3 0 1 2 3

Bits 1 1 0 0

Shifted 1 1 0 0

Example

Clock 0 1 2 3 0 1 2 3 0 1

Bits 0 0 0 0 1 1 0 0 0 0

Clock 0 1 2 3 0 1 2 3 0

Bits 1 0 0 0

Shifted 0 1 0 0

Example

Clock 0 1 2 3 0 1 2 3 0 1

Bits 0 0 0 0 1 1 0 0 0 0

Clock 0 1 2 3 0 1 2 3 0 1

Bits 0 0 0 0

Shifted 0 0 0 0

Oh look, we’ve discovered a Hi-Res Violet pixel (with
fringing)

Clock 0 1 2 3 0 1 2 3 0 1 2 3

Bit 0 0 0 0 1 1 1 1 0 0 0 0

Colour ? ? ?

Clock 0 1 2 3 0 1 2 3 0 1 2 3

Bit 0 0 0 0 0 0 1 1 0 0 0 0

Colour ? ? ?

Clock 0 1 2 3 0 1 2 3 0 1 2 3

Bit 0 0 0 0 1 1 0 0 0 0 0 0

Colour ? ? ?

Fringing

Violet

Green

WhiteInterference

+

 =

Everyone knows there are only 6 Hi-Res Colours

● unless you read Sather, “Understanding the Apple IIe”
● Remember the funny business with the palette bit shifting

dots by 1 position, and how this extends/truncates dot
patterns at the byte boundary?

● Can get 14 of 16 colours at byte boundaries
○ Plus the usual fringing

Hi-Res Yellow?!

Bit Pos 4 4 5 5 6 6 6 0 0 1 1

Clock 2 3 0 1 2 3 0 1 2 3 0

Bit 0 0 0 0 1 1 1 0 0 0 0

Colour ? ? ?

Odd offset

0 1 2 3 4 5 6 P

0 0 0 0 0 0 1 0

Even offset

0 1 2 3 4 5 6 P

0 0 0 0 0 0 0 1

