AppleCrate l|

Michael Mahon

~“applell ~“applell o ~“applell ~“applell ~“applell

hggﬁcesggg; ~“applell

Why AppleCrate?

m In the early 1990s, | became interested in “clustered”
machines: parallel computers connected by a LAN.

m This interest naturally turned to Apple Il computers,
and the possibility of creating an Apple Il “blade

server’.

m A lucky eBay bid in 2003 netted me 25 Apple //e main
boards (14 enhanced) for $39, including shipping!

“Because it can be done!”

APPLEM-MAClNTOSHq F
kanzasfest

AppleCrate |

An 8-machine Apple //e cluster,
all unenhanced machines.

ROMs modified for NadaNet
boot (from server)

Powered by PC power supply

Fine for a desktop, but quite
fragile for travel!

kansasfest
B o | 2008

Why AppleCrate II?

Out of the 25 main boards, 14 were Enhanced //e’s.

+ Only 512 bytes of self-test space in ROM required a new
“passive” network boot protocol.

| wanted a ‘Crate that was mechanically robust and

compact enough to travel.

| wanted to scale it up to 16 machines, and
incorporate a “master” for convenience.

| wanted better quality sound output.

A machine to support

' II's. p
"Tﬁ"%?'éooa parallel programming on Apple II’s —

APPLE Il - MACINTOSI
JuLy 22:27

g =
zazfest
- . 2008

AppleCrate l|

17 Enhanced //e boards

+ 1 "master” and 16 “slaves”

¢ Self-contained system
|/O can be attached to the top
board, so it is the “master”

All boards stacked horizontally
using standoffs for rigidity
Total power ~70 Watts

+ ~4 2 Watts per board!
17-channel sound

+ External mixer / filter / amplifier

GETID daisy chain causes IDs
to be assigned top-to-bottom

~~applell

Parallel Programming

m The fundamental problem is maximizing the degree
of concurrent computation to minimize time to
completion.

m [o achieve that it is necessary to decompose a
program into parts that:

+ Require sufficient computation so that communication cost
does not dominate TTC

+ Are sufficiently independent so that communication does not
dominate TTC

+ Do not leave a few large/long sequential tasks whose
computation will dominate TTC

han=dzfazt ~“applall

Pipeline Parallelism

m Processing is divided into “phases” or “stages” that:
+ Require approximately the same time to completion
¢ Can be performed essentially independently on many
different data sets
m Balancing the times required by each stage
independent of the data can be difficult.
+ The pipeline runs at the speed of the slowest stage.
+ A problem in any stage is a problem for the whole pipeline.

Oo—>0—->0—->0—>0>0—>0—>0—

This approach can be compared to

INTOSH[; F =
kcln::.c{sgggé an assembly line. ~“applell

Process Parallelism

m Processing is divided into separate processes that:
+ Can take any amount of time or resource
+ Can be performed independently on different data sets

+ Any particular data set may have a unique path through
the network of processes.

¢ Data sets (“jobs™) queue for each process

m Balancing processing resources to minimize
queueing can be very difficult.

> 11

*MSC\Z:DZ > 111 O~

This approach can be compared to

. . £
kznﬁcg?gg,?e scheduling a machine shop floor. Capplell

Data Parallelism

m Some problems naturally “fall apart” into many
nearly identical independent pieces that:
+ Are sufficiently fine-grained that none dominates TTC
¢ Can be easily aggregated to balance computation with
communication
m These problems are “made to order” for parallel
computation, since decomposition is trivial.

—> 111

Often so easy it’s known as

|NToqu F / /
han=zasfest “embarrassing parallelism” capplell

Examples of
Data Parallelism

Monte Carlo simulations
Database querys

Most transaction processing
+ But must still check for independence

Mandelbrot fractals

kqnsqsfest
WWWWWWWWWW - .. 2008

BPRUN

(Broadcast Parallel Run)

RUNs an Applesoft program on all serving machines

Performs standard AppleCrate initialization
+ Takes census of serving machines
+ Boots any machines awaiting boot

+ Re-takes census
Starts Message Server if needed

For each serving ‘Crate machine, &POKEs amd
&CALLs the BPRUNNER program at $200

Broadcasts the BASIC program using “boot hack”
Registers “check-in” of machines running program

Loads and starts all slave machines

kﬂjﬁ??gs.?; in parallel. ~“applell

Parallel Mandelbrot

Each point is completely independent!

A “job” could be anything from a single point to all
53,760 points!

+ | chose 280 points, or a line, for each “job”
The master machine queues jobs (in random order)

Each idle slave machine:
+ Takes the first job in the job queue,
¢ Executes the computation, and
+ Enqueues the result for the master to display

~ The result is an almost linear
increase in the speed of execution.

INTOSH q F
hanZdzfas! ~applal

Mandelbrot Master

REM Job parameters
N =192 : P = 20 : REM 192 jobs, max of 20 at a time
JN = O:RN = 0:SCH = 0 : REM Start empty

REM Build and maintain job queue

IF JN < N AND SCH < P THEN GOSUB 2400: REM Sched another job
IF RN < N THEN GOSUB 2500: REM Get result of job

IF RN < N GOTO 2230

"PRINT CHR$ (7)"All jobs completed."
END

REM Schedule new job
JN = JN + 1

POKE BUF,ILM$(JN - 1): REM Line number

& PUTMSG (2, JQ, 8, BUF) : REM Enqueue job in JQ
SCH = SCH + 1

RETURN

REM Receive and display job result

& GET MSG# (2, RQ, LL, BUF) : REM Get result from RQ

IF PEEK(1l) THEN FOR I = 1 TO 100: NEXT I: RETURN : REM Delay if no result
SCH = SCH - 1:RN = RN + 1 : REM One less thing to do, one more thing done.

PY = PEEK (BUF)
H = INT (PY / 8):L1 PY - H * 8 : REM Compute start of HGR2 line PY
L3 = INT (H / 8):L2 H-13 * 8
LINE = 4 * 4096 + L1 1024 + L2 * 128 + L3 * 40

FOR I = 0 TO 39: POKE LINE + I, PEEK (BUF + 2 + I): NEXT I : REM Display line
RETURN

You can see why it’s cglle'd
embarrassing parallelism! ;qpme“

RatRace

A “pure communication” program

Each slave is associated with a Message Server
iInput queue
The queues are “primed” with three messages each
Each slave machine:

+ Gets the first message from the queue,

+ “Ages” the message by 1, and

+ Puts the message on a random recipient’s queue

« Until each message has been passed 50 times

2850 messages are sent

e — and received!
kanzasfest

RatRace Program

REM Message passing loop

& GET MSG#(2,IQ,L,BUF): REM Receive a message
IF NOT PEEK (1) GOTO 700

PRINT CHRS$ (7);: REM Delay 100 ms. & flash LED
K=K+ 1: REM Timeout counter

IF K < 50 GOTO 600

END : REM If 15 seconds w/o message.

REM Increment message age and pass it on...
K = 0: REM Reset timeout counter
S = PEEK (BUF + 1): REM Message "age"
IF S = 50 GOTO 600: REM Max trips--it stops here.

& PUTMSG#(2,Q + D,20,BUF)
IF NOT PEEK (1) GOTO 600
PRINT "PUTMSG err."

END

POKE BUF + 1,S + 1: REM Inc age by 1 and send it on.
D= INT (RND (1) * NC) + 3: REM Random destination,

3..NC+2

All communication, no computation.

ﬁaﬁ?qsfest

"
““““““““““““ - - 2008
KANSAS GITY, MISSOUR. |

Crate.Synth: Master

Performs standard AppleCrate initialization

Reads music file containing voice tables and music
streams for each “oscillator” machine

Loads needed voices and music into each slave

Loads synthesizer into each slave and starts it
(waiting for &BPOKE)

Starts all slaves in sync when requested

This process could benefit
substantially from parallel loading.

kqnsqsfest
WWWWWWWWWW - .. 2008

Crate.Synth: Slaves

m \Waits for master's &BPOKE to start

m Fetches commands from music stream that:
+ “Rest” for T samples (11,025 samples/second), or
+ “Play note N for T samples in current voice, or
¢+ Change to voice V, or
¢ Stop and return to SERVE loop.

Any oscillator can play
any voice at any time.

kqﬁ?_cfsfcst

Questions and discussion...

kqnsqsfest
WWWWWWWWWW - .. 2008

HOI{= (A Typical Protocol)

POKE Request —mmm——mmmvovov—2>p
POKE Ack ——

Data Ack/Nak @————————

kqnsqsfest
e ol e 2008

Control Packet Format

Request | Request Address
Modifier I I

Request identifies all control packets of a given request type
¢+ PEEK, POKE, CALL, etc.

Modifier specifies the role of the packet within the protocol

+ Request, Request Ack, Data Ack, Nak

Dest is the target machine ID

From is the sending machine ID

Address (generally) specifies an address in the target machine
Length (generally) specifies a data length

Cksum is an EOR checksum of all bytes in the packet

han=dzfazt ~“applall

Nadanet Data Format

&
7

Locked
or.ldle 8 cy

¢
7”7 T
Coarse
sync

T

APPLE Il - MACINTOSH E n d Of
n 1l p

kqnsqsfegt checkbyte
: < [2008

NadaNet Arbitration

Always listen before sending

Wait for net to be idle for 1 millisecond + ID * 22cy
+ [ower ID machines have higher arbitration priority

Seize net by forcing HIGH state

+ Only 11-cycle sample-to-seize window for idle net collisions

Consequences:

+ Network is “locked” until it is idle for longer than 1ms.
+ All requests satisfy this requirement and so are atomic.

han=dzfazt ~“applall

