
AppleCrate II

Michael Mahon

Why AppleCrate?

 In the early 1990s, I became interested in “clustered”
machines: parallel computers connected by a LAN.

 This interest naturally turned to Apple II computers,
and the possibility of creating an Apple II “blade
server”.

 A lucky eBay bid in 2003 netted me 25 Apple //e main
boards (14 enhanced) for $39, including shipping!

“Because it can be done!”

AppleCrate I

 An 8-machine Apple //e cluster,
all unenhanced machines.

 ROMs modified for NadaNet
boot (from server)

 Powered by PC power supply
 Fine for a desktop, but quite

fragile for travel!

Why AppleCrate II?
 Out of the 25 main boards, 14 were Enhanced //e’s.

 Only 512 bytes of self-test space in ROM required a new
“passive” network boot protocol.

 I wanted a ‘Crate that was mechanically robust and
compact enough to travel.

 I wanted to scale it up to 16 machines, and
incorporate a “master” for convenience.

 I wanted better quality sound output.

A machine to support
parallel programming on Apple II’s.

AppleCrate II
 17 Enhanced //e boards

 1 “master” and 16 “slaves”
 Self-contained system

 I/O can be attached to the top
board, so it is the “master”

 All boards stacked horizontally
using standoffs for rigidity

 Total power ~70 Watts
 ~4.2 Watts per board!

 17-channel sound
 External mixer / filter / amplifier

 GETID daisy chain causes IDs
to be assigned top-to-bottom

Parallel Programming

 The fundamental problem is maximizing the degree
of concurrent computation to minimize time to
completion.

 To achieve that it is necessary to decompose a
program into parts that:
 Require sufficient computation so that communication cost

does not dominate TTC
 Are sufficiently independent so that communication does not

dominate TTC
 Do not leave a few large/long sequential tasks whose

computation will dominate TTC

Pipeline Parallelism
 Processing is divided into “phases” or “stages” that:

 Require approximately the same time to completion
 Can be performed essentially independently on many

different data sets

 Balancing the times required by each stage
independent of the data can be difficult.
 The pipeline runs at the speed of the slowest stage.
 A problem in any stage is a problem for the whole pipeline.

This approach can be compared to
an assembly line.

Process Parallelism
 Processing is divided into separate processes that:

 Can take any amount of time or resource
 Can be performed independently on different data sets
 Any particular data set may have a unique path through

the network of processes.
 Data sets (“jobs”) queue for each process

 Balancing processing resources to minimize
queueing can be very difficult.

This approach can be compared to
scheduling a machine shop floor.

Data Parallelism
 Some problems naturally “fall apart” into many

nearly identical independent pieces that:
 Are sufficiently fine-grained that none dominates TTC
 Can be easily aggregated to balance computation with

communication

 These problems are “made to order” for parallel
computation, since decomposition is trivial.

Often so easy it’s known as
“embarrassing parallelism”

Examples of
Data Parallelism

 Monte Carlo simulations
 Database querys
 Most transaction processing

 But must still check for independence

 Mandelbrot fractals

 RUNs an Applesoft program on all serving machines
 Performs standard AppleCrate initialization

 Takes census of serving machines
 Boots any machines awaiting boot
 Re-takes census

 Starts Message Server if needed
 For each serving ‘Crate machine, &POKEs amd

&CALLs the BPRUNNER program at $200
 Broadcasts the BASIC program using “boot hack”
 Registers “check-in” of machines running program

BPRUN
(Broadcast Parallel Run)

Loads and starts all slave machines
in parallel.

 Each point is completely independent!
 A “job” could be anything from a single point to all

53,760 points!
 I chose 280 points, or a line, for each “job”

 The master machine queues jobs (in random order)
 Each idle slave machine:

 Takes the first job in the job queue,
 Executes the computation, and
 Enqueues the result for the master to display

Parallel Mandelbrot

The result is an almost linear
increase in the speed of execution.

Mandelbrot Master
 2180 REM Job parameters
 2190 N = 192 : P = 20 : REM 192 jobs, max of 20 at a time
 2200 JN = 0:RN = 0:SCH = 0 : REM Start empty
 2210 :
 2220 REM Build and maintain job queue
 2230 IF JN < N AND SCH < P THEN GOSUB 2400: REM Sched another job
 2240 IF RN < N THEN GOSUB 2500: REM Get result of job
 2250 IF RN < N GOTO 2230
 2260 :
 2270 PRINT CHR$ (7)"All jobs completed."
 2320 END
 2330 :
 2400 REM Schedule new job
 2410 JN = JN + 1
 2430 POKE BUF,LM%(JN - 1): REM Line number
 2440 & PUTMSG (2, JQ, 8, BUF) : REM Enqueue job in JQ
 2460 SCH = SCH + 1
 2470 RETURN
 2480 :
 2500 REM Receive and display job result
 2560 & GET MSG# (2, RQ, LL, BUF) : REM Get result from RQ
 2570 IF PEEK(1) THEN FOR I = 1 TO 100: NEXT I: RETURN : REM Delay if no result
 2580 SCH = SCH - 1:RN = RN + 1 : REM One less thing to do, one more thing done.
 2590 PY = PEEK (BUF)
 2600 H = INT (PY / 8):L1 = PY - H * 8 : REM Compute start of HGR2 line PY
 2604 L3 = INT (H / 8):L2 = H - L3 * 8
 2606 LINE = 4 * 4096 + L1 * 1024 + L2 * 128 + L3 * 40
 2607 FOR I = 0 TO 39: POKE LINE + I, PEEK (BUF + 2 + I): NEXT I : REM Display line
 2610 RETURN

You can see why it’s called
embarrassing parallelism!

 A “pure communication” program
 Each slave is associated with a Message Server

input queue
 The queues are “primed” with three messages each
 Each slave machine:

 Gets the first message from the queue,
 “Ages” the message by 1, and
 Puts the message on a random recipient’s queue

• Until each message has been passed 50 times

RatRace

2850 messages are sent
and received!

RatRace Program
 600 REM Message passing loop
 610 & GET MSG#(2,IQ,L,BUF): REM Receive a message
 630 IF NOT PEEK (1) GOTO 700
 640 PRINT CHR$ (7);: REM Delay 100 ms. & flash LED
 650 K = K + 1: REM Timeout counter
 660 IF K < 50 GOTO 600
 680 END : REM If 15 seconds w/o message.
 690 :
 700 REM Increment message age and pass it on...
 710 K = 0: REM Reset timeout counter
 740 S = PEEK (BUF + 1): REM Message "age"
 750 IF S = 50 GOTO 600: REM Max trips--it stops here.
 760 POKE BUF + 1,S + 1: REM Inc age by 1 and send it on.
 770 D = INT (RND (1) * NC) + 3: REM Random destination, 3..NC+2
 800 & PUTMSG#(2,Q + D,20,BUF)
 820 IF NOT PEEK (1) GOTO 600
 830 PRINT "PUTMSG err."
 840 END

All communication, no computation.

Crate.Synth: Master

 Performs standard AppleCrate initialization
 Reads music file containing voice tables and music

streams for each “oscillator” machine
 Loads needed voices and music into each slave
 Loads synthesizer into each slave and starts it

(waiting for &BPOKE)
 Starts all slaves in sync when requested

This process could benefit
substantially from parallel loading.

Crate.Synth: Slaves

 Waits for master’s &BPOKE to start
 Fetches commands from music stream that:

 “Rest” for T samples (11,025 samples/second), or
 “Play note N for T samples in current voice, or
 Change to voice V, or
 Stop and return to SERVE loop.

Any oscillator can play
any voice at any time.

Questions and discussion...

POKE (A Typical Protocol)

POKE Request
POKE Ack

Data packets

Data Ack/Nak

...

8
8

256
256

?

8

Control Packet Format
Request Request

Modifier
Dest From Address Length Cksum

 Request identifies all control packets of a given request type
 PEEK, POKE, CALL, etc.

 Modifier specifies the role of the packet within the protocol
 Request, Request Ack, Data Ack, Nak

 Dest is the target machine ID
 From is the sending machine ID
 Address (generally) specifies an address in the target machine
 Length (generally) specifies a data length
 Cksum is an EOR checksum of all bytes in the packet

Control packets are ~1ms long.

Nadanet Data Format

Locked
or Idle

ONE
8 cy

ZERO
16 cy

ONE
31 cy

ZERO
8 cy

ONE
8 cy

Bit 7
8 cy

Bit 6
8 cy

...

Bit 1
8 cy

Bit 0
8 cy

ZERO
22-23 cy

ONE
8 cy

Bit 7
8 cy

Bit 6
8 cy

......

Bit 1
8 cy

Bit 0
8 cy

ZERO
(Idle)

...

End of
checkbyte

Packet end:

Interbyte separator:

Start of packet:

Servo
edge

Servo
edge

Coarse
sync

Start
sync

30-31 cy

71 cy

NadaNet Arbitration

 Always listen before sending
 Wait for net to be idle for 1 millisecond + ID * 22cy

 Lower ID machines have higher arbitration priority

 Seize net by forcing HIGH state
 Only 11-cycle sample-to-seize window for idle net collisions

 Consequences:
 Network is “locked” until it is idle for longer than 1ms.
 All requests satisfy this requirement and so are atomic.

