
Real Sound for 8-bit Apple II’s

Michael Mahon

The Apple II speaker
(and cassette output)

 Can only toggle “1-bit output”
 Can’t choose “polarity”
 Doesn’t respond to alternate low-frequency toggles

Simple Sound
 Double-frequency timing loop

 Squarewaves (beep, etc.)

 Actual frequency timing loop
 Non-50% duty cycle, timbre (Red Book)

 Infinitely-clipped 1-bit sound
 Distorted speech and music (Hex Dump Reader, Audex,

etc.)

Complex Sound

 Ultrasonic timing loop with variable duty cycle
pulses
 Electric Duet (4 duty cycles = 2-bit precision)
 Software Automatic Mouth (?)
 Sampled sound (many duty cycles)

Variable Duty Cycle

•
•

•

93 cycles

63

03

02

01

00

Sample
value

70 23

8310

849

858

867

•
•

•

Software DACs

 Sample rate (11.025kHz)
 Pulse rate (11.025kHz / 22.05kHz)
 Bits of precision (3, 4, 5, 6)

Timing Constraints
 11kHz = 93 Apple II cycles/sample

 1/93cy = 10.973kHz, -52Hz, -0.005%
 1/92cy = 11.092kHz, +67Hz, +0.006%

 Apple II timing resolution = 1 cycle
 4 cycles required to flip speaker

 8 cycles per pulse, 4-cycle minimum width

 Sound amplitude = Δwidth / period

Software DAC loop example
first try: constant 93 cycles, 6-bit precision

loop:
 4 [Start pulse]
 3 JMP vector1
 <0-63 Variable delay>
 4 [End 7-70 cycle pulse]
 3 JMP vector2
 <63-0 Complementary variable delay>
 5 Fetch next sample
 2 Check for end (if =0)
10 Increment ptr,Y
 6 Shift sample
 4 Get vector1
 4 Set vector1
 2 Transform vector1--> vector2
 4 Set vector2
 3 JMP loop

117 cycles ** 24 cycles too long! **

DAC611
Constant 93 cycles, 93-cycle pulse period, 6-bit precision

loop:
 4 [Start pulse]
 6 Get vector1
 4 Set vector1
 3 JMP vector1 (-->long: if >$7F)
 <2-33 delay>
 4 [End 19-50 cycle pulse]
 4 Transform vector1-->vector2
 4 Set vector2
 3 JMP vector2
 <33-2 complementary delay>
10 Increment ptr,y
 5 Fetch next sample
 2 Test for end if =0
 6 Shift 3
 3 JMP loop
93 cycles

long:
17 (entered at +17 cycles)
 <2-33 delay>
11 Increment ptr,y
 4 Transform vector1-->vector2
 4 Set vector2
 5 Fetch next sample
 2 Test for end if =0
 6 Shift 3
 4 [End 51-82 cycle pulse]
 3 JMP vector2
 <33-2 complementary delay>
 2 NOP
 0 [falls into loop]
93 cycles

Pulse frequency of 11kHz is intolerable to many listeners.
[Greg Templeman, 1993]

 Logically 32 separate pulse generators
 Each generates two pulses in 92 cycles
 Each fetches next sample and sets vector
 Then it vectors to next generator
 Computation is distributed between pulse edges

DAC522
Constant 92 cycles, 46-cycle pulse period, 5-bit precision

Pulse frequency of 22kHz is inaudible!

DAC522 Pulse Generators

•
•

•

46 cycles

•
•

•

46 cycles

937 37 9

379 9 37

388 8 38

397 7 39

406 6 40

31

03

02

01

00

Sample
value

•
•

•

Other Problems
 Starting and stopping without “pops”

 Solution: Don’t stop!
• “Ramp” waves to start and stop at 0 level
• generate continuous 0-level pulses (except for key clicks)

 Generating long sounds at 11kB/second
 Solution: Direct Digital Synthesis

• Resample wavetables on-the-fly
• Use envelope table for dynamics

RT.SYNTH
Single-voice multi-timbral real-time wavetable synthesizer

 Voice waves are resampled on-the-fly to note frequencies
 Frequency = Integer.fraction sample index increment

 Can support as many different voices as fit in memory
 A voice is represented as a set of single-cycle waveshapes selected by a

table representing the envelope of the voice.
 This supports

• Tonal voices with complex attacks that are resampled
• Atonal sounds that are played as “waves”

 Wavetable waveforms are stored starting and ending at zero
amplitude to minimize pops

 “Resting” or idling sound is the zero-level pulse train

0800: 8D 30 C0 >6 gen0 sta spkr ; <==== start time: 0
0803: EA >7 nop ; Kill 2 cycles
0804: 8D 30 C0 >8 sta spkr ; <===== stop time: 6
0807: 85 EB >9 sta ztrash ; Kill 3 cycles
0809: E6 ED >10 inc scount ; Compute envelope
 >11 ciny
080B: F0 01 >11 beq *+3 ; If =, branch to iny
080D: A5 >11 dfb $A5 ; "lda $C8" to skip iny
080E: C8 >11 iny
 >11 eom
080F: 18 >12 clc
0810: A5 EC >13 lda frac ; Compute next sample
0812: 65 FE >14 adc freq
0814: 85 EC >15 sta frac
0816: 8A >16 txa
0817: 65 FF >17 adc freq+1
0819: AA >18 tax
081A: B1 06 >19 lda (env),y ; Next sample page
081C: 8D 30 C0 >20 sta spkr ; <==== start time: 46
081F: EA >21 nop ; Kill 2 cycles
0820: 8D 30 C0 >22 sta spkr ; <===== stop time: 52
0823: 85 EB >23 sta ztrash ; Kill 3 cycles
0825: 8D 2A 08 >24 sta :ptr+2
0828: BD 00 00 >25 :ptr ldaa 0*0,x ; Fetch sample.
082B: 8D 3C 08 >26 sta :sw0+2
082E: C6 FC >27 dec dur ; Decrement duration
 >28 cdec dur+1
0830: F0 02 >28 beq *+4 ; If eq, branch to dec
0832: EA >28 nop ; Else kill 2 cycles and
0833: AD >28 dfb $AD ; "lda xxxx" to skip dec
0834: C6 FD >28 dec dur+1 ; of zero-page param.
 >28 eom
0836: A5 FD >29 lda dur+1
0838: F0 03 >30 beq :quit ; Finished.
083A: 4C 00 00 >31 :sw0 jmp 0*0 ; Switch to gen, T = 89
 >32
083D: 4C 40 09 >33 :quit jmp quit

DAC522 Generator Code

CRATE.SYNTH
8-voice multi-timbral MIDI playback wavetable synthesizer

 Uses AppleCrate machines as eight digital oscillators
 MIDI.COMPILER

 Merges multi-stream MIDI events
 Tempo changes complicate timekeeping
 Schedules 8 digital oscillators in one pass
 Tries to re-use oscillators with a voice history
 When >8 oscillators needed, “steals” from oldest note

 CRATE.SYNTH
 Uses NadaNet to load the 8 oscillator machines
 Starts them all in sync (AppleCrate drift is ~1 ms. in 40 sec.)

Questions and discussion...

