
Real Sound for 8-bit Apple II’s

Michael Mahon

The Apple II speaker
(and cassette output)

 Can only toggle “1-bit output”
 Can’t choose “polarity”
 Doesn’t respond to alternate low-frequency toggles

Simple Sound
 Double-frequency timing loop

 Squarewaves (beep, etc.)

 Actual frequency timing loop
 Non-50% duty cycle, timbre (Red Book)

 Infinitely-clipped 1-bit sound
 Distorted speech and music (Hex Dump Reader, Audex,

etc.)

Complex Sound

 Ultrasonic timing loop with variable duty cycle
pulses
 Electric Duet (4 duty cycles = 2-bit precision)
 Software Automatic Mouth (?)
 Sampled sound (many duty cycles)

Variable Duty Cycle

•
•

•

93 cycles

63

03

02

01

00

Sample
value

70 23

8310

849

858

867

•
•

•

Software DACs

 Sample rate (11.025kHz)
 Pulse rate (11.025kHz / 22.05kHz)
 Bits of precision (3, 4, 5, 6)

Timing Constraints
 11kHz = 93 Apple II cycles/sample

 1/93cy = 10.973kHz, -52Hz, -0.005%
 1/92cy = 11.092kHz, +67Hz, +0.006%

 Apple II timing resolution = 1 cycle
 4 cycles required to flip speaker

 8 cycles per pulse, 4-cycle minimum width

 Sound amplitude = Δwidth / period

Software DAC loop example
first try: constant 93 cycles, 6-bit precision

loop:
 4 [Start pulse]
 3 JMP vector1
 <0-63 Variable delay>
 4 [End 7-70 cycle pulse]
 3 JMP vector2
 <63-0 Complementary variable delay>
 5 Fetch next sample
 2 Check for end (if =0)
10 Increment ptr,Y
 6 Shift sample
 4 Get vector1
 4 Set vector1
 2 Transform vector1--> vector2
 4 Set vector2
 3 JMP loop

117 cycles ** 24 cycles too long! **

DAC611
Constant 93 cycles, 93-cycle pulse period, 6-bit precision

loop:
 4 [Start pulse]
 6 Get vector1
 4 Set vector1
 3 JMP vector1 (-->long: if >$7F)
 <2-33 delay>
 4 [End 19-50 cycle pulse]
 4 Transform vector1-->vector2
 4 Set vector2
 3 JMP vector2
 <33-2 complementary delay>
10 Increment ptr,y
 5 Fetch next sample
 2 Test for end if =0
 6 Shift 3
 3 JMP loop
93 cycles

long:
17 (entered at +17 cycles)
 <2-33 delay>
11 Increment ptr,y
 4 Transform vector1-->vector2
 4 Set vector2
 5 Fetch next sample
 2 Test for end if =0
 6 Shift 3
 4 [End 51-82 cycle pulse]
 3 JMP vector2
 <33-2 complementary delay>
 2 NOP
 0 [falls into loop]
93 cycles

Pulse frequency of 11kHz is intolerable to many listeners.
[Greg Templeman, 1993]

 Logically 32 separate pulse generators
 Each generates two pulses in 92 cycles
 Each fetches next sample and sets vector
 Then it vectors to next generator
 Computation is distributed between pulse edges

DAC522
Constant 92 cycles, 46-cycle pulse period, 5-bit precision

Pulse frequency of 22kHz is inaudible!

DAC522 Pulse Generators

•
•

•

46 cycles

•
•

•

46 cycles

937 37 9

379 9 37

388 8 38

397 7 39

406 6 40

31

03

02

01

00

Sample
value

•
•

•

Other Problems
 Starting and stopping without “pops”

 Solution: Don’t stop!
• “Ramp” waves to start and stop at 0 level
• generate continuous 0-level pulses (except for key clicks)

 Generating long sounds at 11kB/second
 Solution: Direct Digital Synthesis

• Resample wavetables on-the-fly
• Use envelope table for dynamics

RT.SYNTH
Single-voice multi-timbral real-time wavetable synthesizer

 Voice waves are resampled on-the-fly to note frequencies
 Frequency = Integer.fraction sample index increment

 Can support as many different voices as fit in memory
 A voice is represented as a set of single-cycle waveshapes selected by a

table representing the envelope of the voice.
 This supports

• Tonal voices with complex attacks that are resampled
• Atonal sounds that are played as “waves”

 Wavetable waveforms are stored starting and ending at zero
amplitude to minimize pops

 “Resting” or idling sound is the zero-level pulse train

0800: 8D 30 C0 >6 gen0 sta spkr ; <==== start time: 0
0803: EA >7 nop ; Kill 2 cycles
0804: 8D 30 C0 >8 sta spkr ; <===== stop time: 6
0807: 85 EB >9 sta ztrash ; Kill 3 cycles
0809: E6 ED >10 inc scount ; Compute envelope
 >11 ciny
080B: F0 01 >11 beq *+3 ; If =, branch to iny
080D: A5 >11 dfb $A5 ; "lda $C8" to skip iny
080E: C8 >11 iny
 >11 eom
080F: 18 >12 clc
0810: A5 EC >13 lda frac ; Compute next sample
0812: 65 FE >14 adc freq
0814: 85 EC >15 sta frac
0816: 8A >16 txa
0817: 65 FF >17 adc freq+1
0819: AA >18 tax
081A: B1 06 >19 lda (env),y ; Next sample page
081C: 8D 30 C0 >20 sta spkr ; <==== start time: 46
081F: EA >21 nop ; Kill 2 cycles
0820: 8D 30 C0 >22 sta spkr ; <===== stop time: 52
0823: 85 EB >23 sta ztrash ; Kill 3 cycles
0825: 8D 2A 08 >24 sta :ptr+2
0828: BD 00 00 >25 :ptr ldaa 0*0,x ; Fetch sample.
082B: 8D 3C 08 >26 sta :sw0+2
082E: C6 FC >27 dec dur ; Decrement duration
 >28 cdec dur+1
0830: F0 02 >28 beq *+4 ; If eq, branch to dec
0832: EA >28 nop ; Else kill 2 cycles and
0833: AD >28 dfb $AD ; "lda xxxx" to skip dec
0834: C6 FD >28 dec dur+1 ; of zero-page param.
 >28 eom
0836: A5 FD >29 lda dur+1
0838: F0 03 >30 beq :quit ; Finished.
083A: 4C 00 00 >31 :sw0 jmp 0*0 ; Switch to gen, T = 89
 >32
083D: 4C 40 09 >33 :quit jmp quit

DAC522 Generator Code

CRATE.SYNTH
8-voice multi-timbral MIDI playback wavetable synthesizer

 Uses AppleCrate machines as eight digital oscillators
 MIDI.COMPILER

 Merges multi-stream MIDI events
 Tempo changes complicate timekeeping
 Schedules 8 digital oscillators in one pass
 Tries to re-use oscillators with a voice history
 When >8 oscillators needed, “steals” from oldest note

 CRATE.SYNTH
 Uses NadaNet to load the 8 oscillator machines
 Starts them all in sync (AppleCrate drift is ~1 ms. in 40 sec.)

Questions and discussion...

