
Code Secrets of
Wolfenstein 3D IIGS

Eric Shepherd

Fast Screen Refresh with
“PEI Slamming”

Or, “Dirty Tricks with the Direct Page”

IIGS Features We Can
Abuse

Super high-resolution graphics shadowing

Bank $01 stack and direct page

Relocatable stack and direct page pointers

Super High-Resolution
Shadowing

The Apple IIGS has
only one SHR graphics
page, in bank $E1, from
$2000-$9FFF.

Bank $E1
$2000

$A000

Super High-Resolution
Shadowing

But you can draw
graphics into bank $01
in the same memory
range...

Bank $01
$2000

$A000

Bank $E1
$2000

$A000

Super High-Resolution
Shadowing

So that when you draw
into bank $01, the data
is “shadowed” into bank
$E1 by the Apple IIGS
hardware.

Bank $01
$2000

$A000

Bank $E1
$2000

$A000

Super High-Resolution
Shadowing

Why is this helpful?

Banks $00 and $01 are “fast” memory,
while $E0 and $E1 are “slow” memory.

Writing into Bank $01
Even Faster

The Direct Page and
Stack are special areas
of memory used for
special purposes.

They have special
opcodes that are
faster for moving data.

They’re usually in bank
$00...

Bank $00

$0000

$FFFF

Direct Page

Stack

Writing into Bank $01
Even Faster

...but you can move
them to bank $01!

$0000

$FFFF

Direct Page

Stack

Writing into Bank $01
Even Faster

...but you can move
them to bank $01!

Bank $01

$0000

$FFFF

Direct Page

Stack

Writing into Bank $01
Even Faster

Bank $01

$0000

$FFFF

Direct Page

Stack

Softswitches

$C005 and $C003
enable writing and
reading to bank $01 as
DP and stack

$C004 and $C002
disable writing and
reading from bank $01
as DP and stack

Relocating the Stack and
DP Pointers

As usual, you can use the TCD (Transfer
Accumulator to Direct Page Pointer) and TCS
(Transfer Accumulator to Stack Pointer)
opcodes to relocate the direct page and
stack.

This works even when the DP and stack are
in bank $01.

Putting It All Together

Step 1: Turn off shadowing

SEP #$20

LDA >$E0C035

ORA #$08

STA >$E0C035

REP #$20

Putting It All Together

Step 2: Draw your
graphics, treating bank
$01 as it it were bank
$E1.

Bank $01
$2000

$A000

Putting It All Together

Step 3: Turn shadowing
back on.

SEP #$20

LDA >$E0C035

AND #$F7

STA >$E0C035

REP #$20

Bank $01
$2000

$A000

Putting It All Together
Step 4: Save entry DP
and stack, disable
interrupts, and switch
to bank $01 stack and
direct pages.

Bank $01
$2000

$A000

! tdc
! sta EntryDP
! tsc
! sta EntryStack
! sei
! shortm
! sta >$00C005
! sta >$00C003
! longm

Putting It All Together

Why disable
interrupts?

Bank $01
$2000

$A000

Putting It All Together

Why disable
interrupts?

Because if an interrupt
happens while we’ve
moved the direct page
and stack into a
strange place, the
system will probably
crash.

Bank $01
$2000

$A000

Putting It All Together

Step 5: Point the
Direct Page Pointer at
$2000, the start of
SHR memory.

LDA #$2000

TCD

Bank $01
$2000

$A000

Putting It All Together

Step 5: Point the
Direct Page Pointer at
$2000, the start of
SHR memory.

LDA #$2000

TCD

Bank $01
$2000

$A000

Direct Page

Putting It All Together

Step 6: Point the
Stack Pointer at $20FF,
the top of the first
page of the SHR
buffer.

CLC

ADC #$00FF

TCS

Bank $01
$2000

$A000

Direct Page

Putting It All Together

Step 6: Point the
Stack Pointer at $20FF,
the top of the first
page of the SHR
buffer.

CLC

ADC #$00FF

TCS

Bank $01
$2000

$A000

Direct Page
Stack

Putting It All Together

Step 7: Copy a page of
graphics data on top of
itself fast.

Why? Because this
will cause the
hardware to shadow it
over to bank $E1.

Bank $01
$2000

$A000

Direct Page
Stack

How PEI Slamming
Works

PEI (Push Effective
Indirect) fetches a
word from the direct
page and pushes it
onto the stack.

$2000

$20FF Stack

Direct Page

How PEI Slamming
Works

The stack starts at
$20FF and works
backward torward
$2000.

The direct page starts
at $2000 and works
forward toward $20FF.

$2000/$2001

$20FE-$20FF Stack

Direct Page

How PEI Slamming
Works

PEI $FE

This pushes the word
at offset $FE ($20FE-
$20FF) on the direct
page onto the stack,
which puts it at the
same spot!

$2000/$2001

$20FE-$20FF Stack

Direct Page

How PEI Slamming
Works

PEI $FE

This pushes the word
at offset $FE ($20FE-
$20FF) on the direct
page onto the stack,
which puts it at the
same spot!

$2000/$2001

$20FE-$20FF Stack

Direct Page

How PEI Slamming
Works

PEI $FE

This takes just 6
cycles (and two bytes
of code) to refresh
those two bytes of
video to the screen.

$2000/$2001

$20FE-$20FF Stack

Direct Page

How PEI Slamming
Works

PEI $FE

This takes just 6
cycles (and two bytes
of code) to refresh
those two bytes of
video to the screen.

$2000/$2001

$20FE-$20FF Stack

Direct Page

How PEI Slamming
Works

PEI $FE

PEI $FC

...

PEI $02

PEI $00

Do 128 PEIs in a row
to copy the entire
256-byte page.

$2000/$2001

$20FE-$20FF Stack

Direct Page

How PEI Slamming
Works

PEI $FE

PEI $FC

...

PEI $02

PEI $00

Do 128 PEIs in a row
to copy the entire
256-byte page.

$2000/$2001

$20FE-$20FF Stack

Direct Page

Putting It All Together

Step 8: Keep moving
the DP and stack
pointers and copying
another page until you
reach $9D00 (or
$A000 if you need to
copy palettes and scan
control bytes).

Bank $01
$2000

$A000

Direct Page

Stack

$9D00

Putting It All Together

But periodically, you
need to move the DP
and stack back to bank
$00 and re-enable
interrupts to let MIDI
Synth, GS/OS, and so
forth keep running
normally.

Bank $01
$2000

$A000

Direct Page

Stack$9D00

Let Those Interrupts Run
Disabling Interrupts

sei
shortm
sta >$00C005
sta >$00C003
longm

Enabling Interrupts

shortm
sta >$00C004
sta >$00C002
longm
lda EntryStack
tcs
lda EntryDP
tcd
cli

The End Result

Reading Multiple Keys
Down at Once

Or, “Abusing the ADB for Fun and Profit...
Well, Mostly Fun”

Things to Note about
ADB

Apple Desktop Bus

Transmits packets describing state changes of
connected devices

You can hook in at a low level to be informed
when the state changes

Intercepting Low-Level
Keyboard Events

Set up an array with the state of every key
on the keyboard

Watch for changes to key states, and record
them in the array

Sending an ADB
Command

CallSendInfo: A routine that sends X bytes
of data using ADB command code Y.

CallSendInfo STA >ADBTemp
PHX
PEA ADBTemp|-16
PEA ADBTemp
PHY
_SendInfo
RTS
DS 6ADBTemp

Installing an SRQ
Completion Routine

Step 1: Zero the key state array

Clear

DS 128

LDX #128-2
STZ KeyArray,X
DEX
DEX
BPL Clear

KeyArray

Installing an SRQ
Completion Routine

LDX #1
LDY #setModes
LDA #1
JSR CallSendInfo

Step 2: Disable ADB autopolling.

Installing an SRQ
Completion Routine

PEA SRQCompRoutine|-16
PEA SRQCompRoutine
PEA $0002
_SRQPoll

Step 3: Install the SRQ completion routine
by passing a pointer to our completion
routine and the ADB device ID (2 for a
keyboard) to the SRQPoll ADB Tool Set call.

Handling ADB Events

LDA [DataPtr] ;# bytes?
BEQ SRExit ;No data

Step 1: Write the SRQCompRoutine code to
receive events from the ADB. After it sets
up its bank and DP as needed, it needs to
look to see if data has arrived. A pointer to
the received data is on the stack, at offset
DataPtr.

Handling ADB Events

REP #$30
LDY #1
LDA [DataPtr],Y
TAY ;Save a copy
AND #$7F7F
CMP #$7F7F ;Reset key?
BEQ SRSpecial ;Yes, handle

Step 2: Fetch the ADB data out of the data
buffer and preprocess it. We have to check

Handling ADB Events

TYA ;Get it back
AND #$FF00 ;First byte
XBA ;Swap to LOB
TAX ;Save in X
TYA
AND #$00FF ;Second byte
BRA SRMerge1

Step 3: Pull the two ADB data bytes out.

Handling ADB Events

TYA
LDX #$00FF ;Invalid
PHX ;Save 2nd
JSR ProcessReset

Step 4: Handle the reset key if need be.

SRSpecial

SRMerge1

Handling ADB Events

JSR PostIt
PLX ;Get 2nd
PHA ;Save new #1
TXA
JSR PostIt
PLX

Step 5: Update the key states.

Handling ADB Events

TXA ;1st byte
JSR PassADBKeyIfOK
PLA ;2nd byte
JSR PassADBKeyIfOK

Step 6: Forward the keys to the ADB
microcontroller.

Updating the Key State
Array

PHA ;Save key
CMP #$80 ;Set/clear c
AND #$7F ;Keycode idx
TAX
LDA #$00
ROL ;Key state
EOR #$01 ;0 for keyup
STA >KeyArray,X
PLA
RTS

Set the key’s entry if down, clear it if up.

PostIt

Sending the Key to ADB

CMP #$00E0 ;Pfx code?
BGE PAExit
CMP #$0036 ;Spec. case?
BLT PASendADB
CMP #$003B
BGE PASendADB
TAX ;Code to X
SEC
SBC #$0036 ;Table index
ASL

Pass keys to the ADB when appropriate.

PassADBKeyIfOK

Sending the Key to ADB

TAY ;Idx to Y
JSR GetModKeyReg ;Get keymods
AND KeyModTbl,Y ;Down?
BNE PAExit ;Yes
TXA
LDX #$0001
LDY #keyCode
JSR CallSendInfo
RTS

Pass keys to the ADB when appropriate.

PAExit

PASendADB

Reading the Keyboard

Now your code can check the state of keys.

if (KeyArray[keyLeft] || KeyArray[0x3B]) {
 /* left arrow or keypad 4 is down */
}

if (KeyArray[keyUp] || KeyArray[0x2B]) {
 /* up arrow or keypad 8 is down */
}

Reading the Keyboard

Your code can detect multiple keys being held
down at the same time, enabling much more
powerful player controls.

See page 3-22 of the Apple IIGS Toolbox
Reference, Volume 1 for the ADB key codes
(which are different from ASCII codes).

Read the ADB chapters in that and in the
Firmware Reference.

Handling System Reset

The ProcessReset routine should look to see
if it’s a key up event on key code $7F7F.

If it is, and the Control and Command keys
are also down, the resetSys command should
be sent to the ADB, to cause the system to
reboot.

Things to Add

When TOBRAMSETUP is called, the SRQ
completion routine is disabled. You may want
to use the GetVector and SetVector Misc
Tool Set calls to intercept this call so you
can re-enable your completion routine.

Don’t forget to remove your patch to this
vector when your application quits!

Q & A
Or, “Huh? That didn’t make any sense.”

