Code Secrets of
Wolfenstein 3D IlGs

Eric Shepherd

Fast Screen Refresh with
"PEI Slamming”

Or, "Dirty Tricks with the Direct Page”

IIGs Features We Can
Abuse

@ Super high-resolution graphics shadowing
@ Bank $01 stack and direct page

@ Relocatable stack and direct page pointers

Super High-Resolution

Shadowing

$2000

@ The Apple 1Ics has
only one SHR graphics
page, in bank $E1, from
$2000-$9FFF.

$A000

Bank $E1

Super High-Resolution
Shadowing

$2000
@ But you can draw
graphics into bank $01
in the same memory
range...
$A000

Bank $01

Bank $E1

$2000

$A000 | t#

Super High-Resolution
Shadowing

$2000
@ So that when you draw
into bank $01, the data
is "shadowed” into bank
$E1 by the Apple IIGs
hardware.
$A000

Bank $01

$2000

$A000

Bank $E1

Super High-Resolution
Shadowing

@ Why is this helpful?

@ Banks $00 and $01 are "fast” memory,
while $EO and $E1 are “slow” memory.

Writing into Bank $01
Even Faster

$0000

@ The Direct Page and

Stack are special areas
of memory used for Direct Pay>

special purposes.

@ They have special
opcodes that are
faster for moving data.

@ TheyTe usually in bank < Stack
$00...

$FFFF

Bank $00

Writing into Bank $01
Even Faster

$0000

Dirg‘i Pag€>

@ ...but you can move
them to bank $01!

$FFFF

Writing into Bank $01
Even Faster

$0000

Dirg‘i Pag€>

@ ...but you can move
them to bank $01!

$FFFF

Bank $01

Writing into Bank $01
Even Faster

$0000

Softswitches

@ $C005 and $C003 Direct Pasw>
enable writing and
reading to bank $01 as

DP and stack

@ $C004 and $C002

disable writing and —
reading from bank $01 .

as DP and stack

$FFFF

Bank $01

Relocating the Stack and
DP Pointers

@ As usual, you can use the TCD (Transfer
Accumulator to Direct Page Pointer) and TCS
(Transfer Accumulator to Stack Pointer)
opcodes to relocate the direct page and
stack.

@ This works even when the DP and stack are
in bank $01.

Putting It All Together

@ Step 1: Turn off shadowing

SEF #3520
LOA »$ERCRIS
IRR #3084
2TH FSEBCAID
REF #3520

Putting It All Together

Bank $01
$2000
@ Step 2: Draw Yyour
graphics, treating bank
$01 as it it were bank
$EL.
2
M .
$A000 It#

Putting It All Together

Bank $01

$2000

@ Step 3: Turn shadowing
back on.

3EF #3520
LOR »$EBCAID
AND #3F7
2TH FSEBCAID
REF 520

$A000 Itﬁﬂf

Putting It All Together

@ Step 4: Save entry DP Bank $01
and stack, disable $2000
interrupts, and switch
to bank $01 stack and
direct pages.

tdc

sta EntrylP
tec

sta Entrystack
el

shortm

A
Tha 14000005 o
fta eAACAR] ,‘}“)

Langm _
: b -
$A000 t#

Putting It All Together

Bank $
& Why disable e %
iIntferrupts?
2
M .
$A000 It#

Putting It All Together

Bank $01
@ Why disable St

iIntferrupts?

@ Because if an inferrupt
happens while we've
moved the direct page
and stack info a
strange place, the
system will probably 1
crash. T

$A000 I t#

Putting It All Together

Bank $01
$2000
@ Step 5: Point the
Direct Page Pointer at
$2000, the start of
SHR memory.
LOA #$2000
Te0 1
2
M .
$A000 It#

Putting It All Together

Bank $01
@ Step 5: Point the

Direct Page Pointer at

$2000, the start of

SHR memory.

LOR #$2000

TC0 1
)
M

$A000 It#

Putting It All Together

i Bank $01
& Step 6: Point the b~
Stack Pointer at $20FF,
the top of the first
page of the SHR
buffer.
CLC
AOC *$HEFF n
TC5 2
2]
M| &
$A000 'ta"

Putting It All Together

Bank $01

@ Step 6: Point the ;
Stack Pointer at $20FF,
the top of the first
page of the SHR
buffer.

CLC
AOC #$0BFF
TS

$A000

Putting It All Together

@ Step 7: Copy a page of
graphics data on fop of
itself fast.

@ Why? Because this
will cause the

hardware to shadow it
over to bank $El.

$A000

How PEI Slamming

Works

O

$2000
@ PEI (Push Effective
Indirect) fetches a
word from the direct
page and pushes it
onto the stack.
$20FF

< Stack

Direc? age

How PEI Slamming

Works

$2000/$2001

@ The stack starts at

$20FF and works
backward torward
$2000.

@ The direct page starts

O

at $2000 and works

forward toward $20FF

$20FE-$20FF

< Stack

Direc? age

How PEI Slamming
Works

$2000/$2001 Direct Page
PE[-%FE
@ This pushes the word 0
at offset $FE ($20FE- o

$20FF) on the direct
page onfo the stack,
which puts it at the
same spot!

O

$20FE-$20FF < Stack

How PEI Slamming
Works

$2000/$2001

'le'eO | age
><‘0

FET $FE

@ This pushes the word 0
at offset $FE ($20FE- o
$20FF) on the direct o
page onfo the stack,
which puts it at the
same spot!

| <

How PEI Slamming
Works

$2000/$2001 Direct Page

FET $FE

@ This takes just 6
cycles (and two bytes
of code) to refresh
those two bytes of
video to the screen.

O

$20FE-$20FF < Stack

How PEI Slamming
Works

$2000/$2001

'le'eO | age
><‘0

PEL $FE
® This takes just 6 -
cycles (and two bytes 2
o)

of code) to refresh
those two bytes of
video to the screen.

| <

How PEI Slamming

Works

$2000/$2001

FET $FE

FET $FC

FET $82
FET @@

O

@ Do 128 PEIs in a row

to copy the entire

256-byte page.

$20FE-$20FF

< Stack

Direc? age

How PEI Slamming
Works

$2000/$2001

PETSEES
FET $FC

FET $82
FET @@

@ Do 128 PEIs in a row
to copy the enfire
256-byte page.

$20FE-$20FF

Putting It All Together

Bank $01

‘‘‘‘‘‘‘
PAA
S (5

@ Step 8: Keep moving
the DP and stack
pointers and copying
another page unftil you
reach $9D00 (or

$A000 if you need to I

copy palettes and scan b

control bytes). L\u_)'
sopoo EM [

$A000 l g

Putting It All Together

Bank $01

| Dir;iiﬁ;

@ Buf periodically, you
need to move the DP
and stack back to bank
$00 and re-enable
interrupts to let MIDI
Synth, GS/0S, and so
forth keep running
normally.

2]
sonoo EM | [- < Stack
$A000 I t#

Let Those Interrupts Run

Enabling Interrupts Disabling Interrupts
short el
cta SHBCARY shortm
sta ASBACARZ sta »$RACARS
Laman sta AHRBECHRS
lda EntryStack Longm
tre
lda EntrylP
trd

cll

The End Result

El |3
i =

FLOOR SCORE ITEM
(= 0000100 00 ‘&

HERLTH AMMO
271007 033

Reading Multiple Keys

Down at Once

Or, "Abusing the ADB for Fun and Profit...
Well, Mostly Fun”

Things to Note about
ADB

@ Apple Desktop Bus

@ Transmits packets describing state changes of
connected devices

@ You can hook in at a low level to be informed
when the state changes

Intercepting Low-Level
Keyboard Events

@ Set up an array with the state of every key
on the keyboard

@ Watch for changes fo key states, and record
them in the array

Sending an ADB
Command

@ CallSendInfo: A routine that sends X bytes
of data using ADB command code Y.

CallSendInfo TR ADETenp
Al lendInfo™ > 8

FER AOBTemp|-16
FER ADBTemp
PHY
sendlnfa
TS
HOETemp 05 &

Installing an SRQ
Completion Routine

@ Step 1: Zero the key state array

LEURrT 3y 05 128

Clear L0k #128-2
5T KeyRrray, &
DEX
OE#
EFL [lear

Installing an SRQ
Completion Routine

@ Step 2: Disable ADB autopolling.

]

-

0y 4
il
;4
B

e Ry s

atModes
| 15endlnfo

Installing an SRQ
Completion Routine

@ Step 3: Install the SRQ completion routine
by passing a pointer to our completion
routine and the ADB device ID (2 for a
keyboard) to the SRQPoll ADB Tool Set call.

FEA SEUCompRoutine| -1k
FER SRUCompRout1ne

FER $QBRZ

_SROPall

Handling ADB Events

@ Step 1: Write the SRQCompRoutine code to
receive events from the ADB. After it sets
up its bank and DP as needed, it needs to
look to see if data has arrived. A pointer to

the received data is on the stack, at offset
DataPtr.

LOA [0ataPtr] % butes?
BEL SREx1t iHo Hata

Handling ADB Events

@ Step 2: Fetch the ADB data out of the data
buffer and preprocess it. We have to check

FEF %30

LOY #1

LOA [DataPtrl,y

TRY iSave 3 copy
HHD #$7F7F

CHF #$7F7F iReset key?
BEN SRSpecial 185, handle

Handling ADB Events

@ Step 3: Pull the two ADB data bytes out.

TYH

HHO #$FFAG
WEBA

TR

TYH

AHD #$BBFF
ERA SRMerge]

iLet 1t back
iF1rst bute
jallap to LOE
iSave 1n A

isecond bute

Handling ADB Events

@ Step 4: Handle the reset key if need be.

sRapeclal TYH |
L0 #3BBFF ilnvalid

CRMergel PH i5ave 2nd
J5R ProcessReset

Handling ADB Events

@ Step 5: Update the key states.

J5R Postlt

PLE et Znd

FHA iSave ney #l
THA

J5F Postlt

FLA

Handling ADB Events

@ Step 6: Forward the keys to the ADB
microcontroller.

THA 15t byte
J5R PassAOBkKeylfOE
FLA i2nd bute

J3R FazsAlEKeylfOK

Updating the Key State

Array

@ Set the keys entry if down, clear it if up.

Fost It

FHA

CHP #$80
HHD #%7F
THE

LDA #$00
ROL
EOR #3501

STH RegRrray, s
FLA

FTS

iSave key
iSet/c]lear ¢
ikeycode 10y

sHe? state
B for keyyp

Sending the Key to ADB

@ Pass keys to the ADB when appropriate.

FazshlEkeylfOK CHP $$BAEH iPfy code?
BLE PREx1t

[P #$00.56 iSpeC, case’
LT PRSendrOB

P #5003E

;E PASendALE

%EE ilode to &
CBC #$ARIE iTable 1ndes

A3l

OO a0

Sending the Key to ADB

@ Pass keys to the ADB when appropriate.

FREendAlE

PREx11

TAY

J5R EetHndHe?Eeg

AN F.e
ENE PHE
THA

i
i

odTh
1t

Hl

L0y #50R61

LY #ke
JoR [al
RTS

?

[ode
cendInfo

ldy to Y
et keymods
iDoun™

ies

Reading the Keyboard

@ Now your code can check the state of keys.

1f (kedArraglkeyleft] || KeyRrraylBxiBl) {
: /% left arrow or keypad 4 15 down %/

1t (keyArraylkedUpl || keuRrraylBxeBl) £
; /% WP arrol or kedpad & 15 doun 3/

Reading the Keyboard

@ Your code can detect multiple keys being held
down at the same time, enabling much more
powerful player controls.

@ See page 3-22 of the Apple IIGs Toolbox
Reference, Volume 1 for the ADB key codes
(which are different from ASCII codes).

® Read the ADB chapters in that and in the
Firmware Reference.

Handling System Reset

@ The ProcessReset routine should look to see
if its a key up event on key code $7F7F.

@ If it is, and the Control and Command keys
are also down, the resetSys command should
be sent to the ADB, to cause the system to
reboot.

Things to Add

@ When TOBRAMSETUP is called, the SRQ
completion routine is disabled. You may want
to use the GetVector and SetVector Misc
Tool Set calls to intercept this call so you
can re-enable your completion roufine.

@ Dont forget to remove your patch to this
vector when your application quits!

