
IIGS Sound
1993 A2-Central Summer Conference

Presented by Steve Gunn (GEnie A2PRO.STEVE) and Nate Trost (GEnie N.TROST)

I. Overview of the Apple IIGS sound hardware
A. Basic Hardware
B. Hardware add-ons

ll. Using the Sound Tool Set and Sound Control Panel

III. Sound File Formats
A. rSound resource
B. HyperStudio
C. AIFF, AIFF-C
D. ASIF
E. Unofficial 'formats'

IV. Low Level Ensoniq Programming
A. Overvie\Y of DOC registers
B. Setting/ getting registers and moving data to/from DOC RAM
C. Playing sounds
D. Oscillator interrupts and timing
E. Special Effects, Stereo

V. Music
A. Overview of music software
B. SoundSmith format
C. Playing SoundSmith sequences
D. MOD format
E. Parsing/Playing MOD sequences

REFERENCES . ·, >

Nate and Steve recommend you have these books if you are interested in
GS sound programming:

Apple IIGS Toolbox Reference 3 (_MUST_ have for IIGS sound
programming, includes~niore detailed information on sound hardware than
TB I and adds documentation for ACE, Note Synthesizer, Note Sequencer,
and :MIDI Tools---although last three are mostly obsole,t~): .::

Apple IIGS Toolbox Reference 2 (Reference for Sound Tool Set)

Apple IIGS Hardware Reference Manual (description of sound hardware)

Programmers Reference for System 6.0 (:MIDISynth:}·eference)

For more information on sound related prQgramming, check out the A2Pro
Roundtable on GEnie. In addition to having Bulletin Board topics on
everything from the Sound Tool Set to Low Level Ensoniq Access, A2Pro
sponsors a weekly Real Time Conference devoted to graphics and sound

~

programming. For more information on A2Pro and GEnie, talk to one of the
A2/ A2Pro staff here at the conference!

) t ~

This text was originally published in the September 1991 issue of 8/16 Central.
Copyright © 1991-93 Nate Trost and Resource Central, Inc.

Unleashing the 'S' in IIGS

by Nate Trost

The Apple IIGS Sound Hardware

The heart of the Apple IIGS sound hardware is the Ensoniq 5503 Digital Oscillator Chip (hereby
referred to as the DOC). An important thing to remember about the DOC is that neither it, or the
64K of dedicated sound RAM is directly linked to the 65816 microprocessor. A custom chip
called the Sound General Logic Unit (GLU) acts as a bridge between the DOC and the rest of the
IIGS hardware.

Please note that we will be using the words 'sound' and 'waveform' interchangeably throughout
the article to mean the same thing-the digital representation, in the memory of the GS, of the
noise we wish to create .

The DOC contains 32 oscillators, each of which generates sound by passing 8-bit values from the
sound RAM, through a digital-to-analog convener, and out to the various sound outputs. The
DOC oscillators are not oscillators in the traditional sense, but Apple named them oscillators, so
that's what we'll call them.

Each DOC oscillator has several one-byte registers assigned to it. These registers control the
frequency that the oscillator will play, the playback volume, pointers to the sounds in DOC
RAM, and other various things. We will discuss the 'nitty-gritty' of the sound hardware in more
detail in an upcoming installment.

The Sound Toolset

~ As with many other parts of GS hardware, Apple has created a toolset (appropriately titled the
Sound Toolset) to make the playback of digitized sounds much easier for the programmer.

The Sound Toolset combines 30 of the 32 DOC oscillators into 15 generators each of which
consists of two oscillators working together. Oscillators 31 and 32 are reserved for the Sound
Toolset's private use.

There are three main Sound Toolset calls used to play digitized sounds. The most imponant is
FFStartSound.

FFStartSound and You

Let's look at an example of a FFStanSound call (example code is in assembly):

PushWord tgenNum ;specify channel, generator ...
PushLong tparamBlock ;pointer to sound parameter block

FFStartSound

* our data

genNum = $0201 ;play sound channel O,with generator 1 ...

paramBlock
waveStart
waveSize
freqOffset
docBuffer
bufferSize
nextWavePtr

with this
volSetting
* dw=2byte

adrl
dw
dw
dw
dw
adrl

SoundPtr ;pointer to sound in main memory
#64 ;sound size in pages (64pages=16K)
#200 ;playback at 10281 hertz ...
$2000 ;start sound at $2000 in DOC RAM
#5 ;buffer is 8K
tO ;no other waveforms to play linked

dw tSFF ;maximum volume
value, adrl=4byte value

Of the two parameters passed on the stack to FFStartSound, the first word sized value, genNum,
obviously needs some explanation. genNum holds settings for various options for the playing of
the sound, the structure of the parameter is as follows:

--> BITS 15-12 (f$x000) CHANNEL NUMBER: the number in these 4 bits
specifies which of the 8 DOC channels plays the sound. It is
usually best to set this to zero. The DOC channels, basically,
have no meaning with the standard IIGS; stereo cards work by
routing even channels to the right and odd channels to the left.

--> BITS 11-8 (#$0x00) GENERATOR NUMBER: this 4 bit value may
range from $0 to Se and specifies on which of the Sound Tools 15
generators the sound will be played.

--> BITS 7-4 (#$00x0) RESERVED: must be set to 0

--> BITS 3-0 (f$000x) MODE: the value in these 4 bits determines
the method used for playing the sound, at the moment the only
supported value is $1 (so always set this to 1) .

FIGURE 1: (layout of parameter)

bits 15-12 11-8 7-4 3-0
#$ X X X X

I I
I
I Channel number Generator num. RESERVED $0 should be $1
I
I

In almost all cases when you want to play a sound, you will want to leave the genNum parameter
value like: #$0x01, replacing the 'x' with your selection of the generator number ($0-$E) to play
the sound with.

After we push the genNum parameter on the stack, we have to push a pointer to a parameter
block (called paramBlock in our examples). The format of this parameter block is as follows:

paramBlock
waveStart adrl SoundPtr ;pointer to our sound in main memory
wave Size dw #64 ;our sound size in pages (64pages=l6K)
freqOffset dw #200 ;playback sound at 10281 hertz ...
docBuffer dw #$2000 ;start sound at $2000 in DOC RAM
bufferSize dw #5 ; I want my buffer in DOC RAM to be 8K
nextWavePtr adrl #0 ;no other waveforms to play now ...
volSetting dw #$FF ;maximum volume

#1--waveStart LONG (pointer to sound in main memory) ...
This parameter is a long pointer to the sound data somewhere in main memory. Your sound data
should terminate with several bytes of $00's to mark the end of the sound
(practically all sound digitizing/modifying program will do this automatically).

#2--waveSize WORD (size of sound in main memory---in _pages_)
This parameter specifies the size of the sound in main memory. A very, very important note, this
parameter specifies the _size in PAGES--_not_ bytes. For high-level folks who may not know, a
'page' is equal to 256 bytes. Although you must specify your sound size in blocks of 256 bytes, as
long as the sound data terminates with several $00 bytes, any left over garbage from beyond your
sound won't be picked up ($00 tells the DOC to stop playing the sound) even if the last page is
only partially used.

#3--freqOffset WORD (frequency for playback)
This parameter specifies the playback rate of the sound. In other words, the value in this will
determine whether that digitized voice you recorded will sound like a monster, a human, or a
duck! This value can easily be converted to and from Hertz:

Convert value to Hertz: VALUE* 1645/32= Hertz

Convert Henz to value: HERTZ*32/1645

#4--docBuffer WORD (address in Sound RAM of buffer for sound)
This parameter is a pointer to the start of a buffer in the 64K of sound RAM. This parameter
tells the Sound Toolset where in the DOC RAM we want our buffer for the DOC to use for
playing the sound. As all sounds in DOC RAM must start on a page boundary, the low byte is
not used and should be set to zero. It is important to note that your buffer for playing the sound
must be aligned in memory in increments equal to the size of the buffer, e.g. if you your buffer
size is 4K, this parameter must point to a pan of DOC memory that rests on a 4K boundary (like
$0000, $1000, $2000 ...), a 8K buffer must be aligned on 8K boundaries ($0000,$2000,$4000 ...).

#5--bufferSize WORD (size of buffer in Sound RAM to play sound in)
The low three bits of this word specify the size of the buffer in Sound RAM you wish your sound
to be played in. The larger the buffer, the less often the Sound Toolset has to refill it from main
memory. The eight possible settings are as follows (other thirteen bits should be zero):

FIGURE 2

if bits
000 (0)
001 (1)
010 (2)
011 (3)
100 (4)
101 (5)
110 (6)
111 (7)

2-0 are: then RAM buffer is:
1 page (256 bytes)
2 pages (512 bytes)
4 pages (1024 bytes)
8 pages (2048 bytes)

16 pages (4096 bytes)
32 pages (8192 bytes)
64 pages (16384 bytes)

128 pages (32768 bytes)

#6--nextWavePtr LONG (pointer to optional next parameter block)
This parameter is a pointer to a parameter block you wish to use after the current sound is
finished. For example, if this pointer is set to the start of the parameter block, the sound would
be played continuously.

#7--volSetting WORD (volume at which to play sound)
The low byte of this value (ranging from $00-$FF) specifies the volume at which to play the
sound.

Stop I say, Stop!

Before calling FFStartSound, you must make sure that the generator you selected will be ready to
play. The FFStopSound call stops whatever sound (if any) the selected generators are playing
and make them ready to play new sounds. There is only one parameter to the FFStopSound call,
a word sized parameter that specifies which generators to stop. There are 16 (0-15) bits in a
word, and 15 generators (numbered 0-14), so with the exception of bit 15, each bit in the word
parameter corresponds to a generator, e.g. setting bit 4 will stop generator 4, bit 0 and generator
0, etc. Here is a small code example:

PushWord t%0001 0001 0010 0001 ;stop generators 12, 8, 5 and 0
_FFStopSound -

Play It Again Sam

Although FFStartSound is a very useful call, there are two other tool calls for playing sounds-­
FFSetUpSound and FFStartPlaying. They were added with the release of System Software 5.0
and work together to produce sound. FFSetUpSound takes the same parameters as FFStartSound,
and, like FFStartSound, does all the necessary setup without actually playing the sound. After a
call to FFSetUpSound, you begin playing your sound by calling FFStartPlaying. FFStanPlaying
uses the same generator flag word as FFStopSound does. In order to play the correct sound,
specify the same generator with FFStartPlaying that you did with FFSetUpSound. You do not
have to call FFStopSound to a generator before issuing a FFStartPlaying call, unlike
FFStartSound. Here is a brief assembly code-segment:

PushWord tgenNurn ;specify channel, generator ...
PushLong tpararnBlock ;pointer to sound parameter block
_FFSetUpSound

PushWord tgenMask
_FFStartPlaying

;select generator(s)
;and begin playing setup sound

These calls are most useful when you have a sound you wish to play over and over again; you
can simply set it up with FFSetUpSound using whatever generator you like, and call
FFStartPlaying specifying the generator to play the sound.

Baq 0' Tricks

Here is one trick you can do, using FFSetUpSound and FFStartPlaying to play sounds without
taking up any of the main RAM (after an initial setup phase). If the sound you
want to play is smaller that the size of the DOC RAM buffer (i.e. a 12K sound would fit in a 16K
buffer), then after calling FFSetUpSound, you can dispose of the memory the sound takes up in
main memory. FFSetUpSound puts the sound data in the DOC RAM, and since it fits in the
buffer, FFStartPlaying will never have to go back to main memory to get more data. There are
limitations. Since there is only 64K of sound RAM, and since the maximum buffer size is 32K,
it may be useful only when you want to add some nifty little sound effects.

