
Apple II Developer~s Conference

Software Design with an EMPHASIS on games

I. Introduction

a. Definitions - Some terms to get us started.

Data Structure - a method of representing data.

Masking - masking is necessary when a background is to appear
underneath a sprite.

Sprites
sprite.

are objects, for instance the paddle in Arkanoid is a

VBL - Short for video blank. This is the period in which the
computer isn't scanning <redrawing) part of the screen.

Video synchronization -A smal I loop that waits for the beam to
go off the screen <general Jy) and then exits.

b. Sample code

Masking- to mask, you must do the following: --<

1. Load the screen data
2. And the screen data with the sprite mask
3. Or the screen data to the sprite data
4. Store in to memory.

This implies that each object needs a mask.

Synchronization - can be achieved by monitoring $c02e or $c019.
See the Apple Technotes about $c02e.

8 bit a

Jlp

J I p2

II. Design Stage

I dal
bmi
Ida!
bpl

$e1c019
J I P
$e1c019
] 1 p

a. What game do you wish to spend a good part of your life on?
Factors involved: ski I I level. artist avai !able, time,

feasibility, music.

The design stage is crucial. AI I of the factors involved must be
there, or the game wil 1 never be finished.

I I I . Putting it a! 1 together

a. Grafix and sound. There isn/t much to say about the artwork
and music. It must be finished, but that/s the artist/s and
musician/s problem. It isn/t a bad idea to use temporary shapes
to begin with, and music can always be added later.

b. Code. The code is the challenging part. A lot of factors
must be accounted for when writing a program of any type.

i. Screen update. If you don/t have stackbased update
libraries, then try using direct screen access. You might
be pleasantly surprised at what the GS can do at 2.8 mhz.
It wouldn/t be a bad idea to write some basic screen
routines, to speed your development time. If you know you
are going to need fast updates, then you should skip the
slow routines and work on the fast ones. The basic concept
of smooth animation is to update the screen during the VBL.
It is impossible to update the whole screen in a VBL, but we
can try. Use the video sync to reduce tears in animation,
and to make the program accelerator friendly.

11. Sprites. If your sprites need to be masked onto the
background, then your code must handle it. Unfortunately,
the GS hardware doesn/t support sprites. You should design
a data structure for storing sprites and masks.

111. Gameplay. The events that happen within the game are
important. Your main loop is crucial, because it makes the
events happen.

c. Optimizing. Now that your code works, how can you make it
better? The best way to determine what part of the code needs to
be optimized is to use the program and then decide what can be
improved. I/11 focus on optimizing the screen updates. because
making your screen updates faster wil 1 also speed up your
gameplay.

i. Screen updates. This can be a problem as the GS
graphics are bottle necked at 1 mhz.

Unrolling loops. In Merlin your code might look like this:
<to draw an 8 x 8 block)

]screen
Jsdata

=
=

$e12000
0

;x contains offset on screen
;y contains offset in shape table

!up 8 ;number of lines tall
Ida Jsdata,y ;loads from shape, stores to screen
stal Jscreen,x ;does 4 pixels (assuming 16 bit)
Ida Jsdata+2,y ;loads next 4 and stores

stal Jacreen+2.x
Jsdata
Jscreen

equ Jsdata+4 ;increment 4 bytes into shape data
equ Jscreen+160 ;Jump to the next I ine on the

;screen.

This !up would get expanded to a bunch of lda/s and stal/s.
For example:

Ida $0000,y
stal $e12000,x
Ida $0002,y
stal $e12002,x
Ida $0004,y
stal $e12004,x
Ida $0006,y
stal $e12006,x
etc.

Read from bank $01. When reading the SHR memory, remember
that reading from bank $01 <assuming shadowing is on) occurs
at fast speed, not 1 mhz. This can be important when
masking sprites on the screen.

Compiled shapes. Load, store and mask only the necessary
parts of sprites. So, if the sprite is large but
predominantly see through, a compiled shape would help. The
disadvantage is the sprite must also be erased.

Stack based or TSB/TRB screen updates. This depends on how
you decide to do you animations. The Stack/TSB/TRB update
rei ies on the idea that you turn off shadowing, and update
bank $01 at 2.8 mhz, then use a Stack/TSB/TRB update routine
to shadow the information onto the video screen. Task Force
uses compiled shapes and a TRB/TSB update routine.

this:
A sample loop for updating the screen might look like

turn off shadowing
draw background
mask sprites onto background
Turn on shadowing
Stack/TSB/TRB update

A simpler variation of this is <assuming static
background):

shadowing is on
mask sprites

The difference is in the mask routine and the sprites.
The mask routine would look like the following:

ldal $012000.x
and mask,y
ora data,y
stal $e12000,x

The routine preserves bank $01. Using this method, the
sprites cannot be compiled. Also, the sprites must be a
little larger than normal, so the routine wil 1 restore the
other parts of the screen.

11. General tips. The cliche goes "90% of the time spent
is in 10% of the code". Two basic ways to optimize this,
make the routine faster, and/ or find out why the code is
spending so much time in this part of the game. From my
experience, 1 or 2 cycles don/t do that much, unless they
are in a loop, or nested loop <even more so).

IV. An example! Dueltris.

V. Where to get help. Don/t be afraid to ask!

a. Other computer platforms. This is something I/d really like
to encourage. IBMs, Amigas and Macs are great places to get
game ideas or maybe even graphics, music or code, althou~h
you should use their graphics, music or code without
permission.

b. The Internet. The Internet is a great source for
information. If you can/t get a school account, try a
Proline or commercial site.

For more information about games, 3200/s, DreamGrafix, or just life in
general, you can contact us through these channels ...

DreamWorld Software
P.O. Box 830
Iowa City, IA 52244-0830

America_Online:
Genie:

Internet:

Customary Plug

DWS Steve
S.Chiang4

stc7Qcunixb.cc.columbia.edu
dwsjasonQgator.netcom.com <I think)

Stop by our booth, and check out the only 16, 256 and 3200 color paint
program, DreamGrafix, and our newest in entertainment software. Apple
II forever!

