
Exploring the Toolbox Interactively
with GSBug and Nifty List

by Dave Lyons, 15-Jul-91

An excellent way to get comfortable with the GS Toolbox is exploring it
interactively. For example, when you have a question about how a
particular toolbox call behaves or when it is getting called, you can usually
do a quick experiment to find out .

Techniques

• Use GSBug and Nifty List together. GSBug is great for taking control
of the system when it executes particular toolbox calls or GS/08 calls,
and Nifty List is great for examining the state of the system and
making any toolbox calls you want "on the fly".

• Explore the online help: type"?" at the GSBug command line and at
all the sub-screens. Type "?" in Nifty List, and get help for individual
commands ("?_"for making toolbox calls, "?\"for a list of all the

"back slash" commands, "?\files", etc)

• Use Nifty List as a toolbox quick-reference for tool sets, functions
within tool sets, and the parameters needed for each function.

• Experiment with making toolbox calls from the Nifty List command
line; watch the results on the Super Hires screen.

• Intercept tool calls being made by applications or other parts of the
system. Examine their results. Modify the parameters before making
the call, or create an "error" condition after the call.

Exercises

These exercises demonstrate a moderate variety of GSBug and Nifty List
features. Feel free to experiment ... these are just ideas to get you started.

(Some of the exercisers assume your GS is running the Finder.)

Entering and exiting Nifty List
Apple-Ctrl-Esc gets you to the CDA menu; move to Nifty List and hit
Return. When you want to leave Nifty List, Esc takes you back to the CDA
menu.

EnooringanderitingGSBug
Apple-Option-Ctrl-Esc gets you to GSBug. "r Return" (for Resume) puts you
back where you were. While in GSBug, you can usually use Apple-Ctrl-Esc
to get to CDAs, including Nifty List. (In up-to-date GSBugs, the shortcut "n
Return" also takes you to Nifty List.)

Page 1 of 4

Step through code
From GSBug, type "s Return" and hit Space a few times. Each time you hit
Space, GSBug executes a single instruction, or a single toolbox call or
GS/08 call. You can watch the register contents change at the top of the
screen. -Hit Esc to return to the command line, then "r Return" to leave
GSBug.

Set a 'Tool Break'' or ''OS Break"

From GSBug, type "SetTBrk _NewWindow" and "TBRkln" (to enable your
toolbreak). Resume and open a new window from the Finder. You'll drop
into GSBug when the Finder calls N ewWindow (it hasn't executed yet).
Type "s Return". Type "s" to see the SuperHires screen. Hit Space to
execute the NewWindow (the empty window appears). Type "t" to return to
the Text screen. "Esc r Return" will let the Finder continue full-speed.

OSBreaks work similarly. Try "SetOSBrk _OpenGS" and "OSBrkln", for
example. (When you don't want your breaks any more, you'll want
TBrkOut and OSBrkOut.)

You may want to try tool-breaking on TaskMaster. The Finder calls
TaskMaster in its main loop. Lots of stuff can happen inside a TaskMaster
call (windows are drawn, moved, resized; menus are tracked). - You
may find it helpful after breaking on TaskMaster to press and hold the
mouse somewhere (like on the menu bar), hit Space to execute TaskMaster,
and do something with the mouse. TaskMaster returns control to GSBug
only when, say, you finally choose a menu item (or release the button
without choosing one). (Mter you're done, hit T to see the text screen.)

What Tool Sets are being used? What functions do they contain?
Enter Nifty List and type "v Return". All loaded tool sets are listed (tool
number, version, name, and other information).

To see all the functions in a particular tool set, type the tool set number
followed by "T". For example, "2t" for all the Memory Manager functions.
- Most tool sets have more functions than fit on one screen, so use Space to
freeze the screen and to advance by one line. Use Retum to resume
scrolling, and Esc or Apple-period to return to the command line.

You can also get information on a single tool call, if you know its function
number or part of its name. For example, "902t" shows just information on
NewHandle. So does "NewH (type the quote this time!).

Try "Paint to see all the toolbox functions containing "Paint" (most are in
QuickDraw, but one is in Text Edit). -What is the difference between the
"Paint" calls and the similar "Fill" calls? (You may need to refer to Toolbox
Reference, Volume 2; but with Nifty List you can quickly confirm the
apparent pattern.)

Page 2 of4

Make Some Toolbox Calls
Still in Nifty List, type _ TotalMem. Nifty List makes the the call for you and
displays the result. (For a more verbose display of the result, put a ' in front
of it: '_TotalMem.) More easy ones: _SysBeep _GrafDn, _GrafDff,
_QDStatus, _QDVersion, _Random.

How about a call that needs some input parameter? Integer Math? Type
"integer to find that it's tool set number B. Type "bt" to see what calls are
there. - Multiply probably scrolled off ... type "90bt" to see its parameters.
It needs two inputs, so type _multiply(3,3) to get 9.

Int2Dec converts an integer into a decimal string. It needs a place to put
the result, and the memory from $00/0300 to $00/03BF is a good place to play
with (good for people, not for programs). -Try "int2dec to see the
parameters, then (say) _Int2Dec(100,300,10,0). Then type 300.30f;h to
see what it put in memory at location 300.

(If you want other scratch space, you can always call New Handle
manually, or you can use the .\getdp or \getmem commands.)

_GetNewiD(lOOO) allocates a new memory ID in the $10xx range and gives
you the result. What if you try something the toolbox considers "illegal",
like asking for a memory ID in the "toolbox" range? Try it:

GetNewiD(4000)

Sometimes it's handy to use the result of one toolbox call as a parameter to
another one. No problem!

What handles are allocated in memory, and who owns them?
Type Oi to get a long(!) list of handles, addresses, sizes, owners, and owner
names. The zero means "everybody"-· you can cut down the list by typing a
more limiting "user ID". Try ?i for help with the i command.

If you just want to see what memory IDs are who, try \ids.

Try aOOOi to see all handles owned by "ini t" files in your system; 5000i to see
Desk Accessory handles ("?i" for a list of the memory ID ranges).

Disassemble some assembly code
Try FF1800L to see a disassembly with a few toolbox calls in it.

How about El/OL to see a lot of system Jump vectors and where they jump
to? Follow one and see what it does, or who it's jumping into (the "w"
command is helpful). There's more than just one screenful of these vectors
(type L again).

Page 3 of4

Who is using the Resource Manager?
Type \res to find out the IDs of all the things that have started the Resource
Manager (and the addresses of their Resource Converters, if any). You'll
probably find 401E (the Resource Manager itself), 1001 or 1002 (the Finder),
and possibly more, especially if you have an NDA like the Control Panel
open.

Keep exploring
See if you know how to use all the features listed on the Quick Reference
pages.

See if you can use all the "backslash" commands listed by ? \

See if you can use all the toolbox calls!

Page 4 of4

Extensions to Apple IIGS System 6.0 Finder

Finder Says codes
(information sent by the Finder, perhaps because user has done something)

finderSaysHello ($0100)

The Finder sends finderSaysHello late in its startup process, every time the Finder is
launched.

finderSaysGoodbye ($0101)

The Finder sends f inderSaysGoodbye early in its shutdown process to inform extensions
that the Finder is going away (for whatever reason).

finderSaysSelectionChanged ($0102)

The Finder sends this whenever the set of selected icons may have changed. On receiving this
notification, an extension can make the tellFinderGetSelectedicons call to see what
icons are now selected.

finderSaysBeforeOpen ($0104)

Gives your code the chance to handle opening a document

finderSaysOpenFailed ($0105)

When the user opens a document icon, the Finder sends finderSaysBeforeOpen. If the
request does not get handled, the Finder tries to find an appropriate application to launch for the
document. If that doesn't work, the Finder sends finderSaysOpenFailed to give
extensions a chance to handle the request knowing that no application was. found..

·

finderSaysExtrasChosen ($0108)

Notifies extensions that the user selected an item from the Extras menu. The Extras menu remains
hilited until the request processing is finished. If an extension puts up a modal dialog in response
to finderSaysExtrasChosen, the Extras menu title remains hilited the whole time, as it
should. In this case, the extension's menu item should end with an ellipsis (for example,
"Encrypt Files ... ").

systemSaysUnknownDiskinserted ($0002)

Notifies extensions that a disk of an unknown file system was inserted (the Volume call returned
error $52, unknown volume type). An extension may wish to put up an alert giving the user more
information about the disk.

Preliminary Release For A2-Central Sumn1er Conference Distribution Only

Tell Finder codes:
(application to Finder: please do this)
(send to "1\pple-F inder-" using SendRequest)

tellFinderAreYouThere ($8001)

Ask the Finder if it is active.

tellFinderOpenWindow ($8002)

Tell the Finder to open the specified window.

tellFinderCloseWindow ($8003)

Tell the Finder to close the specified Finder window.

tellFinderGetSelectedicons ($8004)

Tell the Finder to return the selected icons.

tellFinderSetSelectedicons ($8005)

Tell the Finder to select the specified icons.

tellFinderLaunchThis ($8006)

Tell the Finder to launch the specified application.

tellFinderShutDown ($8007)

Tell the Finder to shut itself down in an organized manner, and whether to "Turn Off System
Power,'·' or "Restart System," or "Quit"

tellFinderAboutChange ($800C)

Tell the Finder to update the icons in a certain window because the contents of that folder have
been changed.

tellFinderColorSelection ($800E)

Tell the Finder to apply a color selection to the selected icons on the desktop or in a window.

tellFinderAddToExtras ($800F)

Tell the Finder to add the specified menu item to the Extras menu (adding the Extras menu to the
menu bar frrst if it is not already there).

· ·

tellFinderidleHowLong ($8011)

Tell the Finder to return how many ticks it has been idle (so, for instance, a screen blanker could
determine when to blank the screen -- or another extension could determine if the system is not in
use, and free to launch an unattended application).

tellFinderGetWindowicons ($8012)

Tell the Finder to return all the icons associated with a window.

tellFinderGetWindowinfo ($8013)

Tell the Finder to return the window type and a pointer to its path name if the window has a path.

tellFinderRemoveFromExtras ($8014)

Tell the Finder to remove an item from the Extras menu.

Preliminary Release For A2-Central Summer Conference Distribution Only

7/ 1 5/9 1 3:05 AM #2:GSProj:Nifty List:NList.Rev33.§

================

Nifty List v3.3

Revision History

Version 3.3:

DAL Systems
P.O. Box 875
Cupertino, CA 95015

[InterNet: dlyons@apple.com]
[America Online: Dave Lyons]
[GEnie mail: DAVE.LYONS]
[CompuServe: 72177,3233]

o Backslash command names are no longer case sensitive.

15-Jul-91

o Changed in-memory handling of the data file copy so that each
section can be 64K. (The NList.AppleData file is larger than
64K now.)

o Option-return is like Ctrl-T Return Ctrl-T. This is useful for
viewing the super-hires screen during command execution.

o T command displays "+" next to functions that are patched by
the TS2/TS3 patches, "*" next to otherwise-patched functions,
and "?" next to Weirdly-patched functions.

o Added nlClassifyAddr service to map from an input address
into a code and character indicating ROM, system patch,
other patch, invalid address. (Used by T, for example.)

o ;s stack dump of the GS/OS stack now continues with the
caller's stack after dumping all the way up to $BFFF.

Goodies 1.5d2:

o Added \res command to dump Resource Manager globals. (Shows
all current Resource Manager clients and their installed
resource converter routines.)

o \shrsave and \shrload always use color table information from
bank �E1, even when the main image is in bank 1.

Big Brother 0.8d1:

o 1\spy enables toolbox-call watching. 2\spy enables it with
sound (a speaker click on every call). 0\spy turns it off.

o Spy is only partly done, but it's sometimes useful anyway.

o When spy is on, the system goes very slowly, and messages
such as the following appear:

** Caution: function called while toolset inactive or missing **
** Caution: no such function in tool set **
** Caution: tool called with 8-bit registers **
** WARNING: tool call with Decimal mode set! **

Page 1

** Caution: xxxBootinit and xxxReset are reserved for the system **
** Caution: functions $07xx and $08xx are reserved for future use **
** Caution: caller's memory is movable or purgeable **
** Caution: caller's memory ID is not valid **
** Caution: caller address is not allocated **
** Caution: caller's stack is not allocated **
** Caution: caller's stack is movable or purgeable **
** WARNING: At TLShutDown, tool $xx is still active **

7/15/91 3:05AM #2:GSProj:Nifty List:NList.Rev33.§

The following messages appear only for DrawString calls, but
these things and many more will be checked on most toolbox
calls when it's finally done:

** Detected pointer to unallocated memory **

** Detected pointer to moveable or purgeable memory **

** Detected pointer with extra bits set **

** Detected illegal NIL pointer **

** Detected pointer to invalid area **

Version 3.2:

o Added fast text I/O routines. Output to the screen is around 3.5
times faster now.

o A command line that is exactly the same as the previous one no
longer gets added to the command history. (For example, if you
do a lot of separate L commands in a row you don't have to scroll
through them all to find your previous commands in the history.)

o Anywhere that you can specify a range of addresses with abc.def
you can now also specify a starting address and length, by separating
them with a comma. For example, 3/100,40;h dumps 40 bytes in hex
starting at $03/0100 (exactly like 3/l00.13f;h).

o When the 11 11 command returns a result of 2 or 4 bytes, it stores
makes that

-
result the current address, so commands like the following

are possible (you no longer have to retype the result):
LoadResource(800c,07ff0001) h

=FrontWindow;h
GetCodeResConverter L

o The R command now explicitly says which resource application's
search path it is displaying. Or displays the current search path.

o -s tries to display the name of any scrap types present. It knows
about text, picture, sound, Text Edit style, icon data, mask, and
color table.

o Added HyperCard IIgs callback-vector support in the quote command,
the List command. Two new constructs in expressions: "#"
followed by the name of a HyperCard IIgs callback evaluates to
the function code, and " " lets you execute a callback. · Examples:

'#HC:SendCardMessage
(result = 1)

_HC:SendCardMessage(300)
(executes the callback if HyperCard IIgs is active)

o =\ now pauses after each module's help message, in case you have
enough command modules to make = \ scroll the screen.

o Sped up the "i" command by reducing the number of times it has to
call the Loader to find the pathname that goes with an ID.

o Implemented the nlDisasml service for command modules (see the
Writing.Modules file).

o Mainly for the convenience of Nifty List users within Apple, Nifty
List now attempts to load NList.AppleData instead of NList.Data.
If NList.AppleData is not present, it loads NList.Data just like

J_';(_��·,tv<:.. •'

Page 2

Help
?
?\
?<command>

ASCII for string
'"<string>

Command line
<Ctrl-X>
<clear>
<up-arrow>

Controls
<ctrlHandle>;c
0/0;c
<window>;c

Decimal/Hex conversion
'<hex>
'#<decimal>

NiftrList Notes

main commands
commands in available command modules
description of <command>

displays length, then ASCII as it would be put into memory

clear
clear
history

dump control list starting with specified control
dump all of front window's controls
dump specified window's controls

Disassemble (see Memory dump)
<location>L (List memory)
<location>. <endLocation> L
<location>, <range> L
M
X
<Ctrl-N>
<Ctrl-E>

Errors
<error#> \err

Files
\files

toggles accum/memory between 8/16
toggles index registers between 8/16
sets 16-bit operations (Native mode m and x)
sets 8-bit operations (Emulation mode m and x)

find an OS or tool error

show open files
Find in memory

<id/handle/range>\find
0\find [22 bb 0 e 1]

Handle, dereference
<handle:>A
<handle>"L

fmds JSLs (opcode $22) to $E100xx ($BB is a wildcard(!))

Handle of application
\ids
<memiD>i
<flags>. <memiD>i
c018.1000i
10001
lOOxl

dereference
list from dereferenced handle

memory
active memory manager IDs and pathnames
get handles of memory assigned to memiD
just blocks with flags equal to <flags>
locked/fiXed/can't cross bank/no spec mem:
all applications
your application

typical for current code

Handle of memory block that includes a specified address
<address>W

History
<up-arrow>
<address>
<cmd-line><Ctrl-S>
!<comment>

Indirect address
<address>@
<address>"

Memory available
s

7/11/91

retraces history of commands
uses History as a scratchpad (remember address)
cancels command line, but adds it to History for use later
exclamation point adds comment to History

returns 2-byte value at address (0/36@L)
returns 3-byte value at address (E 1/l "L)

system status

Niftylist notes Page 1

Memory dump (see Disassemble)
<location>;H in hex
<location>;A in ascii
<location>;C CDA header (name & entry points) (#is Action entry point)
<location>;N NDA header (name & entry points)(# is Action entry point)
<location>;R interpret next 4 words as Rect coords (left,top) (right, bottom)

Memory dump using temulates
\loadtemp loads *:System:System.Setup:GSBug. Templates
\loadtemp ''filename" loads named template file
\tempinfo pathname, memory info on loaded template file
\temp "Templates" master template list
\temp "category" subcategories in the named category
<address>/temp "templatename" view memory using template
\unloadtemp release memory used by template

Memory Mana�:er IDs
\ids active memory manager IDs and path names

Memory. store to
<location>:<value/expression> <next value/expression> <next>

Menu Bar
<menu bar handle>;m displays menu bar info
0/0;m current menu bar info

Message Center contents
-m

Monitor. visit
*<return>
<ctrl> Y or Q <return> return to Nifty List

Names

<location/memiD/handle>\names
0\names all names in allocated memory except from language card memory

: \ids active memory manager IDs and pathnames
<memiD>\names names in this id
(to assemble labels into object code:
(include M16.debug
(debugSymbols equ 1
(label name
(label procName

Neeation

expands to brl (around label) I signature word / labelLen / label
as substitute for "Proc"

'-<hex>
'-#<decimal>

OS Prefixes
s

Pipeline

.f!u:t
-p
<address>;p
0/0;p

Print
<Apple-H>
<Apple-space>
<Apple-return>

iliill
<ESC>

Q

7/11/91

max 4 bytes

system status

pipelines result ofT, I, H, W, ;c, ;n cmds to following cmd (101T#L)

list of current Window Mgr and Menu Mgr ports
dumps port info
dumps current (not necessarily front) port info

dump screen to printer in slot 1
Linefeeds your printer
Formfeeds your printer

Niftyllst notes Page 2

Resources
<memiD>R
OR
<resourceNum>\rtype
CJ\rtype
<resourceiD>\ri

all specified open resource files, with file IDs and GS/OS ref #s
current application's resource files

Screen
<Ctrl-T>
\SI-IRsave "pathname"

Stack dumu
<stack location>;S

String location

name of resource type
·

name of all resource types
handles of specified resource ID

toggle Super Hi Res screen
save Super Hi Res screen

<id/handle/range>\Find "string
Tool call

_ <toolcallname(param, .. .)> execute toolcall
_New Handle(_multiply(10, #5),_MMS tartU p, COOO,O)
"<toolcallname> tool call's parameters
"<partialtoolcallname> all tool calls containing <partialtoolcallname>
<toolcallnum>T name, current loc, params, toolset it's in (0902T)
<toolsetnum> T for all toolcalls in toolset

Toolset versions, start status
V toolset#, +=started, version, calls in RAM/ROM, W AP, name

Windows
-w
<address>; w
0/0;w

Work Area

<# of pages>\getdp
<# of bytes>\getmem
5500i

7/11/91

list front to back ·

dumps window info
dumps front window info

$300-3CF generally available in 16-bit
gets dp space (e.g., 3\getdp)
gets memory space (e.g., 1234\getmem)
show all workspace areas requested (all memory ids start w $5500)

Niftyllst notes Page 3

7/15/91 1:25AM McDave:GSBug.readme.§

GSBug 1.5 Read.Me 15-Jul-91

Apple Confidential

GSBug Version 1.5

July 15, 1991
Current Version 1.5bl7

Version 1.5b17 (DAL)

Now supports inline imbedded procedure names .(as generated by the name
and procname macros in M16.Debug, for example). These show up in
disassembly and as the operands of JSRs and JSLs.

OSBreaks trigger regardless of call class now. For example, you can
SetOSBrk for either Open or OpenGS, and either one will cause a break.

When GSBug notices a toolbox call .being made in other than full 16-bit
mode, it displays a a warning dialog iusing TLTextMountVolume) .
Hitting ESC at that dialog cancels future warnings until you reload
GSBug.

When GSBug notices a toolbox call being made with Decimal mode on, it
stops cold at a BRK $F8, rather than letting things get completely
baked before crashing.

Fixed one old reference to $010100 to store $CO instead of $80.
Interrupts should reliably use $100 .. 1CO for stack space now.

Added 5 blanks to end of 'TRACE ' message so it completely overwrites
the 'SINGLE STEP' message.

Version 1.5bl5 (DAL)

Option-space now works reliably to bypass a memory-protect range,
including a tool call. (This is an old feature, but keyboard
translation normally prevented it from working!)

In trace mode, Space and ESC now kill "awainting RTx" mode.

Fixed "n" command so it won't crash if nobody has called DebugSetHook.

Having tool breaks on cal�s which get made indirectly by GSBug no longer
cause a crash. You can break on NewHandle now, for example.

In Breakpoint subscreen, Space maps trigger count from 0 to 1 and from
nonzero to zero. Tab moves between the address and count fields (easier
than hitting arrows).

In the memory-protect subscreen, Tab moves between columns.

Added $01/FCOO.FFFF (OS system service calls) to the memory protect list.

Changed the default trace-window setting to center-screen.

Changed the EmulStack value from $80 to $CO (trying to get rid of some
unpredictable crashes, probably caused by AppleTalk running out of
stack space): This means you can safely trace a program while the stack
is in the $01Cl .. OlFF range, and that interrupts use $0100 .. OlCO.

Page 1

7/15/91 1:25AM McDave:GSBug.readme.§

GSBug now takes a whole bank, minimizing its effect on where things
are located in memory relative to each other, and ensuring that tool
breaks work reliably (tool calls never break if they come from the
same bank the debugger is in) .

Version l.Sb14 (DAL)

Versions l.Sb12 and b13 were never officially released. l.Sb14 is fine,
except that I make no guarantees about the Template commands. I think
they work, but you'll get a funky error message from loadtemp.

When you let a JSL execute in real time (including a tool call), the
debugger temporarily changes the owner ID of its own handle to match the
owner of the handle containing the code you"re debugging. This way
MMStartUp returns the appropriate memory ID, instead of always returning
the debugger's ID.

DebugSetHook(nil) now removes the hook.

The lK bank 0 segment GSBug allocates now has the same ID as the debugger
(was previously always $80xx) .

Fixed OS breaks to work after return from ProDOS 8 (added � Notify Proc to
re-trap the OS vectors} .

Page 2

Changed the " " command so that if you don't type a number, it's like typing
zero. For example, if you have a template called "Template" which displays
an informational message, you can type "_Template" instead of "_Template 0".

DP:xxx command dumps 16 bytes from DP to the command line.

Tool call $0CFF DebugGetinfo(word) :long. Word=O returns the current value
of the program counter (useful from a procedure called by the N command) .

Note that real-time counted breakpoints don't work for JMP() ($6C), JMP(,X)
($7C), JML () ($DC), and JSR(,X) ($FC).

Located the misplaced CLI that was causing the X command used on a JSR
to accidentally return with the Bank register set to the debugger's bank,
and the Stack set to the Interrupt-time stack.

Help
?

GSBug Notes

Weird screen stuff {eyery other column is a column of spaces)
OFF
ON

Breakooint
bp
<value to break on>
<tab>
<iteration to break at; e.g., 1>
<esc>
in
r

Breakpoint conditionally
bp
<value to break on>
<right arrow>
1

<esc>
SETIF <B or W> expression
SETIF W A<#$0101
SETIF B $021234=$034321
SETIFWX>Y
In
r

Breakpoint if value in re�ister
setifW A>#$0001
break
bp
<value to break on>
<right arrow>
i
<esc>
in
r

Memory, display
<address>
<address>:
DP:
DP:xxx
<address>::
<address>:::
<spacebar>

Memory, set
<address>:value

Monitor, visit
Mon
Ctrl-Y <return>

Nifty List shortcut
N

OS Breaks
SetOSBrk _ OpenGS
OSB rkin
ShowBrks

7/11/91

or <spacebar> to set 1 as the iteration to break on
or "i" for conditional breakpoints

sets real-time breakpoints
return to program execution

for conditional breakpoints

exprssn operators:=,# (not equal),<,> (greater than or equal)
break if word in accum is less than the constant(#) $0101
break if byte at $0211234 is the same as byte at $0314321
break if word in X greater than word in Y (regs: AXYSDPB)
sets real-time breakpoints
return to program execution
is such-and-such
W for word value; A for accum; > for �; so if accum>O, then

for 'if; puts 'IF' in iteration area

sets real-time breakpoints

16 bytes on the command line
flip to memory screen (21lines, 16 bytes each) (ESC to return)
direct page
16 bytes from direct page:xxx to command line
indirection: use 2 bytes at address
indirection: use 3 bytes at address
next block of memory

put hex value in memory starting at address

NOTE: it blows K I PC I Stack I DP I B I ... Use Nifty List!
return to GSBug

transfers control to Nifty List

append GS for Class 1 calls!!!

GSBug notes Page 1

Registers, alter contents (case sensitive)
<register>=<value> use A, X, Y, K, PC, KJPC, B, D, S, P (& M,Q,L)
X

m
e
DPAGE
STACK

toggles x bit of P
toggles m bit of P
toggles emulation mode
sets D to direct page allocated for user by GSBug
sets S to stack allocated for user by GSBug

Set Step-and-Trace highlighted line
Set
<up-arrow> <up-arrow> ... as many times as necessary
<esc>
CSave *:System:System.Setup:GSBug.Setup

S1w
s
<space>
X
<dow narrow>

Tool Breaks
SetTBrk _ShutDown Tools
TBrkln
ShowBrks

7/11/91

for each step
skip across a jsr or jsl
skip next instruction

GSBug notes Page 2

	1991-lyons-toolbox
	1991-lyons-toolbox-finder
	1991-lyons-toolbox-handout
	1991-lyons-toolbox-gsbug

